Inorganic scintillators are appropriate for nuclear γ-ray spectroscopy due to their high stopping power and light yields, both of which contribute directly into excellent detection efficiency. Maximizing science return, however, depends not only on γ-ray detection but also on spectroscopic performance. Our goal is to optimize these factors to produce a device capable of meeting science-based spectroscopic performance requirements relevant for astrophysics and planetary science, while simultaneously minimizing size, weight, and power resources (SWaP).

Silicon photomultipliers (SPM) are a viable opto-electronic alternative to traditional scintillator readout schemes. Integrated into a high-resolution spectroscopy system they represent an enabling technology, providing a number of key implementation benefits such as ruggedness, compactness, low mass, insensitivity to magnetic fields, and low bias voltage (~30V) operation. While identified originally to address power challenges, SPMs facilitate the use of low-cost scintillating materials, achieve excellent spectroscopic performance, mitigates implementation complexity, and reduce instrument mass significantly - key benefits that in turn may reduce cost.

Maximizing spectroscopic resolution requires optimization of parameters:
- **Maximize** N_{photons}:
 - Materials with high scintillation light yield
 - Optimize match-photodetector optical spectrum & detection QE
 - Optimize Photon Detection Efficiency (PDE)

- **Minimize** $v(t)$:
 - Reduce sensor gain variations
 - Reduce scintillator non-proportionality
 - Mitigate scintillator crystal inhomogeneities

Optimization, combined with next-generation opto-electronic readout devices provides high-resolution, cost-effective gamma-ray spectroscopy solutions.

Spectroscopic Performance

Laboratory measurements of prototypes SPM-based spectrometer module utilizing CsI(Tl). Data shown were obtained at room temperature (~23°C) and 10°C using laboratory radiological standards at a bias voltage 24V above breakdown. Resolution is anticipated to improve by ~20-25% at a bias voltage 4V above breakdown, with a corresponding increase in noise - impact to spectroscopic resolution under study.

- **SPM** @ 662 keV
 - Dark Count: -4kHz @ 23°C
 - Dark Count: -0.9kHz @ 10°C

All performance results validated/ duplicated with analytic model of SPM functionality.

Spectroscopic Optimization

The SPM is a novel, high gain, single photon sensitive sensor based on a summed parallel array of identical and independent Geiger-mode avalanche photodiodes and quenching resistor combined into elements called microcells. SPM detectors are manufactured using standard CMOS technology which results in highly uniform breakdown characteristics.

Each microcell is:
- Structured as a p-n diode
- Provides low-noise amplification of single photoelectrons (~10(5) gain)
- Biased above the breakdown voltage with no current flow
- Photon initiates avalanche breakdown

In general, the maximum obtainable energy resolution (FWHM) can be parameterized as

$$\Delta E = \frac{E}{\sqrt{N_{\text{photons}}}}$$

where N_{photons} is the photoyield of the sensor used to detect scintillation photons, and $v(t)$ is the variance in sensor time (1fs).

Silicon Photomultiplier (SPM)

Prototype Array

Based on Sera’s SPMArray4

SPM detectors are manufactured using standard CMOS technology which results in highly uniform microcell breakdown characteristics, typically within ±0.1%. Such a small breakdown range is significant since it simplifies the electronics requirements for biasing large numbers of detectors. Response uniformity is also good, variations are less than ±10% max/min, within ±0.06V. Such a small breakdown range is significant since it results in highly uniform microcell breakdown characteristics, typically within ±0.1%.

- **Total Irradiation Does (TID) Test**
 - *Dark Voltage: 8V*
 - *Temperature: 20°C*

- **Displacement Damage (DD) Test**
 - *Dark Voltage: 6V*

Radiation Tolerance

Front-End Electronics - Leverage Proven Space-Qualified FEE Implementation Approaches
- **Module Design, Assembly, and Thermal Modeling** - Evaluation of Passive & Active Cooling Approaches, Inform Assembly Design
- **Additional Radiation Tolerance Testing** - Derive Impact to Spectroscopic Performance
- **Instrument Performance & Simulation** - GEANT-based Spectrometer Module Simulation, Incorporate into Full Instrument Model(s)

References for presented work available upon request

Acknowledgement

Supported in part by a LUNAR NASA/Lunar Science Institute research grant