ASTR 1020: Stars & Galaxies February 22, 2008

- *MasteringAstronomy* Homework on The HR Diagram is due Feb. 25th.
- Reading: Chapter 16, sections 16.1-16.3..

Learning Assistants for Fall

- LAs get direct experience with teaching.
- LAs in Astronomy can have any major.
- LAs are paid for your teaching duties!
- Information/Recruitment session on March 5th from 6-8 pm in MCD Biology Interactive Classroom (free food!).

Stellar Properties Review

Luminosity: from brightness and distance

 (0.08 M_{Sun}) 10⁻⁴ L_{Sun} - 10⁶ L_{Sun} (100 M_{Sun})

Temperature: from color and spectral type

 $(0.08\ {\rm M_{Sun}})~$ 3,000 K - 50,000 K $(100\ {\rm M_{Sun}})~$

Mass: from period (p) and average separation (a) of binary-star orbit

0.08 M_{Sun} - 100 M_{Sun}

Off the Main Sequence

- Stellar properties depend on both mass and age: those that have finished fusing H to He in their cores are no longer on the main sequence
- All stars become larger and redder after exhausting their core hydrogen: **giants** and **supergiants**
- Most stars end up small and white after fusion has ceased: white dwarfs

What have we learned?

- What is a Hertzsprung-Russell diagram?
 - An H-R diagram plots stellar luminosity of stars versus surface temperature (or color or spectral type)
- What is the significance of the main sequence?
 - Normal stars that fuse H to He in their cores fall on the main sequence of an H-R diagram
 - A star's mass determines its position along the main sequence (high-mass: luminous and blue; low-mass: faint and red)

What have we learned?

- What are giants, supergiants, and white dwarfs?
 - All stars become larger and redder after core hydrogen burning is exhausted: giants and supergiants
 - Most stars end up as tiny white dwarfs after fusion has ceased

Star Clusters

- Our goals for learning
- What are the two types of star clusters?
- How do we measure the age of a star cluster?

What are the two types of star clusters?

What have we learned?

- What are the two types of star clusters?
 - Open clusters are loosely packed and contain up to a few thousand stars
 - Globular clusters are densely packed and contain hundreds of thousands of stars
- How do we measure the age of a star cluster?
 - A star cluster's age roughly equals the life expectancy of its most massive stars still on the main sequence