ASTR 1020: Stars \& Galaxies

February 25, 2008

- Reading: Chapter 17; sections 17.1-17.2.
- MasteringAstronomy Homework on Stellar Evolution is due March $3^{\text {rd }}$.
- SBO observing nights (extra credit)
- Volunteers for Astronomy in the News

Collapse from Cloud to Protostar

1) collapse from very large, cold cloud - cold enough to contain molecules (molecular clouds)

- Fragments into star-sized masses
- Temperature increases in each fragment as it continues to collapse

2.) Collapse continues, temperature stabilizes as convection circulates energy outwards
- On HR Diagram, moves slightly left, downwards

3.) As core temperatures reach millions of degrees, fusion begins
- Collapse slows but doesn't stop
- On HR diagram movement more horizontal

Protostars of different masses follow different
life tracks towards the main sequence

Note: bright new main sequence stars

- Pink hydrogen gas
- Black sooty dust
- Blue nebulae are dust reflections of starlight from massive blue stars
(blue light reflects off dust/atoms more easily than red - this is also why our sky, smoke is blue)

Nebula: cold dark clouds are eroded by intense starlight

Stars eventually heat and disperse the
clouds of star forming regions

Stellar demographics

- Many more low-mass stars than highmass stars are born
- Highest mass stars ~60-100 solar masses (60-100 times the mass of the Sun)
- These evolve off main sequence rapidlymost stars in the galaxy are low-mass main sequence stars

Clicker Question

Colors of galaxies:
For every massive O star that is born, there are ~ 100 lowmass M stars also born

- 1 blue $\mathrm{O} \rightarrow 100$ red M
- Lum O = 10,000 solar luminosities
- Lum $\mathrm{M}=0.001$ solar luminosities
- What color is the starlight from the star forming spiral arms in our galaxy?
- A) Blue
- B) Red
- C) Orange

Protostars and Planets

- Conservation of angular momentum \rightarrow mass \times velocity \times radius $=$ constant.
- Gas \& dust are flung into a disk around the protostar. Planets?
- Some material spun up in magnetic fields as a jet

- A) Blue
- 100 times more M stars, but each is 1/10,000,000 times fainter than an O star

Massive blue stars dominate the light

