ASTR 1020: Stars & Galaxies
February 6, 2008

- MasteringAstronomy Homework on The Sun is due Feb. 11th.
- Reading: Chapter 15, Section 15.1.

Fiske Planetarium Show: Colorado Skies: Celestial Mechanics, Thursday, Feb. 7th at 8:00 pm.

Today’s Class: Measuring brightness of the Stars

- Measuring apparent brightness of stars.
- Measuring stellar luminosities.
- Magnitudes.

A passive science

- Stars are so small compared to their distance to us that we almost never have the resolution to see their sizes and details directly—"point sources"
- We deduce everything by measuring the amount of light (brightness) at different wavelengths (color, spectra)

- Stars take millions, billions of years to go through their life stages— we rarely see a single star change
- Observing many different stars lets us figure out the sequence of a single star’s life

Stellar Luminosity

- What we measure: apparent brightness = how bright it appears to us here on earth
- What we want to know: luminosity = how much energy is emitted (Joules/sec or watts) a.k.a. absolute luminosity

- Next few lectures: focus on how we figure out the properties of stars.
- Coming soon: how we deduce the ages and life histories of stars.
A Big Problem in Astronomy

- A star of a given apparent brightness could be EITHER a very luminous star far away OR a low-luminosity star close

NEED TO KNOW THE DISTANCE TO THE STAR

Clicker Question

These two stars have about the same luminosity -- which one appears brighter?

A. Alpha Centauri
B. The Sun

Clicker Question

These two stars have about the same luminosity -- which one appears brighter?

A. Alpha Centauri
B. The Sun

Inverse square law

Luminosity passing through each sphere is the same

The relationship between apparent brightness and luminosity depends on distance:

\[
\text{Brightness} = \frac{\text{Luminosity}}{4\pi (\text{distance})^2}
\]

We can determine a star’s luminosity if we can measure its distance and apparent brightness:

\[
\text{Luminosity} = 4\pi (\text{distance})^2 \times \text{Brightness}
\]
Clicker Question

How would the apparent brightness of Alpha Centauri change if it were three times farther away?

A. It would be only 1/3 as bright
B. It would be only 1/6 as bright
C. It would be only 1/9 as bright
D. It would be three times brighter

Magnitudes: all you need to know

• Dates back from the original Hipparchus (190 BC).
• Convenient only because it can handle huge ranges in brightness (factors of 10^{12}) via logarithms.
• A kind of ranking of a star’s brightness.

Apparent magnitude ZERO is the brightest star in the sky.
Mag 7 is faintest naked eye can see.
Mag 30 = faintest ever really detected.

NOTE THE BACKWARDS SCALE!
Bigger number is fainter!

Clicker Question

How would the apparent brightness of Alpha Centauri change if it were three times farther away?

A. It would be only 1/3 as bright
B. It would be only 1/6 as bright
C. It would be only 1/9 as bright
D. It would be three times brighter

How do we measure the distances to astronomical objects?

• We’ll keep asking this question again over the semester
• Several techniques, each valid for different objects at different distances
• Technique #1 for next class: PARALLAX