ASTR 1020: Stars \& Galaxies

February 8, 2008

- MasteringAstronomy Homework on The Sun is due Feb. $11^{\text {th }}$.
- Reading: Chapter 15, Section 15.1.

How do we measure the distances to astronomical objects?

- We'll keep asking this question again over the semester.
- Several techniques, each valid for different objects at different distances.
- We need distances to determine luminosities of stars.

Class demos:

- Your nose is the Sun
- Your left eye is the Earth in January
- Your right eye is the Earth in June

Watch the apparent motion of your thumb against a distant reference
 point

Which "move" more- closer or farther objects?

Parallax formula

- Distance (parsecs)
$=1 /$ parallactic angle (arcsecond)
Parsec = a unit of distance invented just for this method of distance measurement!

1 parsec $=1$ pc $=3.26$ light years
Remember 1 arcsecond = 1/3600 degree!

Parallax and Distance

$$
\begin{gathered}
p=\text { parallax angle } \\
d \text { (in parsecs) }=\frac{1}{p \text { (in arcseconds) }} \\
d \text { (in light - years) }=3.26 \times \frac{1}{p \text { (in arcseconds) }}
\end{gathered}
$$

- (B)
maximum distance is set by the accuracy you can measure positions

Distance (pc) $=1 / 0.05$ arcsec $=20 \mathrm{pc}$

$$
=65 \mathrm{ly}
$$

- Clicker Question: The biggest groundbased telescopes with adaptive optics can measure a stars' position to accuracies of about 0.05 arcseconds. How far away could they map the positions of stars via parallax?
a) $2 \mathrm{pc}=6.5$ light years
b) $20 \mathrm{pc}=65$ light years
c) $200 \mathrm{pc}=650$ light years

Best parallax measurer: Hipparcos satellite (1989-1993)

- Space measurements not affected by atmosphere
- Measurement made many times until accurate to 0.001 arcsec $(\rightarrow 3300$ light years)
- 100,000 stars mapped

- (2.5 million to slightly lesser accuracy)

- Brad and Angelina are two stars that have the same apparent brightness. Brad has a larger parallactic angle than Angelina. Which star is more luminous?
a) Brad
b) Angelina
c) Not enough information. Can't tell.
- Brad has a larger parallactic angle. Thus, he is closer to us.
- They both have the same APPARENT brightness, but Brad is closer
- B. Angelina must be more luminous.

Astronomer's Toolbox: What do we know how to do now?

- Measure distance: parallax, good to nearby stars but not beyond
- Measure absolute luminosity:
measure apparent brightness and distance, infer luminosity

Next: temperature

