ASTR 1020: Stars & Galaxies January 28, 2008

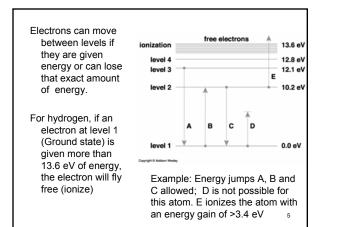
• Reading: Chapter 14, sections 14.1.

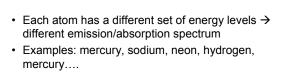
• *MasteringAstronomy* Homework on Light and Spectroscopy is due Feb. 4th.

• Volunteer for "Astronomy in the News".

Clickers today

- 50% for any answer
- 100% for correct answer
- 5 free clicker days to take care of technical problems and missed classes.


3


 Clicker registration problems? Send Jason Henning or your LA an E-mail, include clicker number.

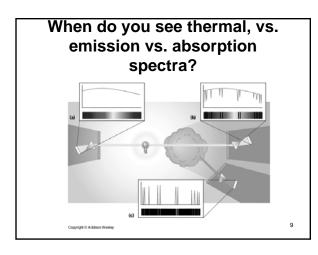
Today's Class

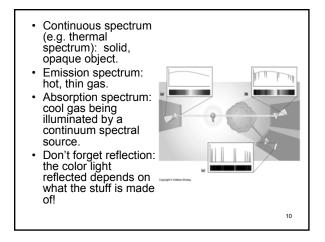
Chapter 6: Review of Light & Matter

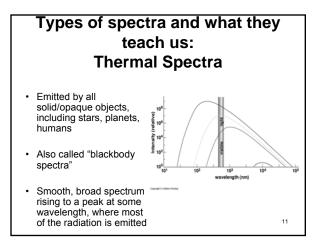
Light and Atoms Types of Spectra Light and Atoms

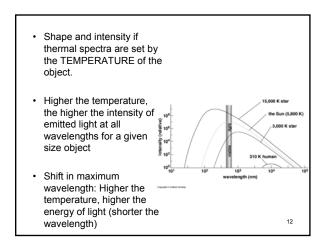
Demo: diffraction grating spectroscopes

helium			
sodium			
neon			
Copyright © Addison Wesley			

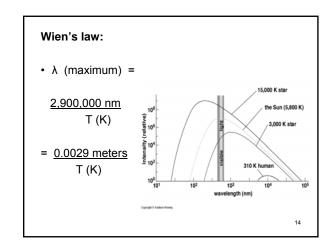

Clicker Reading Question: The light we see from stars is mostly thermal radiation. Antares is a star with a distinct reddish color. How is its surface temperature different from the Sun?


- a) It's greater than the Sun.
- b) It's the same as the Sun.
- c) It's less than the Sun.


Clicker Reading Question: The light we see from stars is mostly thermal radiation. Antares is a star with a distinct reddish color. How is its surface temperature different from the Sun?


8

- a) It's greater than the Sun.
- b) It's the same as the Sun.
- c) It's less than the Sun.



 Classic example: red hot pokers. As the iron heats, it glows brighter and emits more white/blue light (shorter wavelength). As it cools, it dims and emits redder light, and finally mostly invisible IR light.

Quick guide to thermal spectra Images of the Milky Way (be familiar with these) IR: emission from dust warmed by starlight (e) 3 K (coldest natural things): 1mm (microwaves) 300 K (people, planets, warm dust): $10^{\text{-}5}$ meters (IR) Optical- emission from the stars; dust absorbs light and causes dark bands (c) 3000-30,000 (stars): 10⁻⁶ m to 10⁻⁷ m UV/X-ray points: black holes, other intense regions (d) = 1000 to 100 nm (IR - visible -UV) Radio, some X-ray and gamma-ray light comes from non-thermal sources- we'll talk about these soon! (a) 300,000- 30,000,000: weird and intense places (UV through X-rays) 15

13