ASTR 1020: Stars \& Galaxies

 March 17, 2008- Reading: Chapter 20, sections 20.1 20.2.
- MasteringAstronomy Homework on The Milky Way is due March 19th.
- Volunteer for "Astronomy in the News"; sign up for SBO extra-credit observing.
- Meet Friday at Fiske Planetarium!

Spiral Arms- why?

"Density waves"- stars move in and out of denser regions

More like ripples in a pond than arms of a pinwheel

In dense regions, star formation is more intense, so "arms" are brighter

- Material is pulled a little forward or backwards towards the high density regions
- Note how this creates a spiral pattern

How did it get started?

- Possibly a bump/pull from the gravity of another galaxy

Clicker Question: We want to map out the structure of the core of the Milky Way. What wavelength should we be using, and why?
a) IR or radio
b) visible light
c) X-rays

The Galactic Center

- Constellation Sagittarius

Nothing very interesting there?

- IR or Radio!
- Dust obscures our vision of much of the galaxy in visible and UV light.
- X-rays only highlight the hottest and weirdest places

IR and radio light pass through unaffected, show dust, stars gas

Animation of Star Motions in the Milky Way Center

- Adaptive optics to separate star images
- Observing over several years
- Infrared wavelengths to see through dust

- Some of the mass is stars; the rest is in a 3-4 million solar mass black hole?

\qquad ang

Clicker Question: A 3 million solar mass black hole represents:
a) 99.9% of the mass of the Milky Way
b) 1% of the mass of the Milky Way
c) less than $1 / 1000^{\text {th }}$ the mass of Milky Way

- (C) Less then 1/1000th

Number of stars $=100$ billion $\sim 10^{11}$
Total mass $=10 \times 10^{11}=10^{12}($ a trillion $)$

3 million solar masses / 10^{12} solar masses $\sim 10^{-5}$, or $1 / 100,000$

Tiny fraction of the galaxy- but still remarkable because it's in such a tiny space!

Hint:

- How many stars are in the Milky Way (check last class' notes)
- Dark matter outweighs this by about a factor of 10 ...

