ASTR 1020: Stars \& Galaxies March 5, 2008

- Reading: Chapter 18, section 18.3; summary of key concepts.
- MasteringAstronomy Homework on Star Death is due March $10^{\text {th }}$.
- Exam 2 on Friday, March $14^{\text {th }}$ (Chapters 15.3-19.2).
- Meet Friday at Fiske Planetarium for "Dr. Einstein's Universe!

Astronomy In the News

Chandra Video
Clol

The Stellar Graveyard

Low mass stars \rightarrow white dwarfs gravity vs. electron degeneracy pressure

High mass stars \rightarrow neutron stars
Gravity vs. neutron degeneracy pressure

Even more massive cores \rightarrow black holes Gravity wins.....

White Dwarfs

- For solar-mass star, a hot core of carbon (can also be oxygen for higher mass stars)

Size ~ Earth !!
Density - $1 \mathrm{~cm}^{3}$ weighs about 5 tons

Cool from white-blue through red to black

Pulsars

- Collapse to a neutron stars increases both rotation and magnetic field
- Newly collapsed neutron stars rotate 100 s to 1000 s of times per second

- Magnetic fields focus energy/radiation along magnetic poles

New form of light $=$ synchrotron radiation

- Earth lies at the unique intersection of many pulsar beams- use these as galactic pointers to our location

Pioneer 10 spacecraft panel- now past Pluto

Synchrotron Radiation

- Fast electrons in strong magnetic fields \rightarrow neutron stars, black holes
- Different shape from thermal radiation: strongest emission in
 radio

Clicker Question

- The coolest objects in the galaxy are at about 29 K , and the hottest stars are at $29,000 \mathrm{~K}$. At what wavelengths do synchrotron radiation dominate?
Wien's law: wavelength $=2,900,000 \mathrm{~nm} / \mathrm{T}$
a) less than 0.1 mm , more than 1000 nm
b) less than 0.1 mm , more than 100 nm
c) less than 1 mm , more than 1000 nm
a) Cold Wavelength $=2,900,000 / 29$

> =100,000 nm

$$
\text { = } 0.1 \text { mm }
$$

This is in the far IR, near the edge of radio.
b) Hot Wavelength $=2,900,000 / 29,000$

$$
\text { = } 100 \text { nm }
$$

This is in ultraviolet light.
c) So, this is answer - less than 1 mm , more than 1000 nm This is the radio part of the spectrum.

Observing Pulsars

- Jocelyn Bell: Cambridge graduate student in 1967 discovered pulsars by accident from an early radio telescope

- LGM's?
- Really stands out in radio and X-ray
where there is little thermal radiation
- Visible light versus Xrays show stars versus "collapsed objects"

Pulsar "Lighthouses" don't actually pulse

- Must be very compact object to spin so fast
- Spin slows down gradually (thousands of years)

Neutron Stars in Binary Systems

- Mass transfer:
- Gravitational potential energy
\rightarrow X-ray radiation emission

X-Ray Binary system, X-ray bursters

Matter falling through the spinning disk can spin UP the pulsar!

Visible versus X-ray

- Thermal light from stars \rightarrow visible and IR
- Synchrotron light from neutron stars \rightarrow X-ray and radio

When the mass is too great....

- For even neutron degeneracy to hold up, supernova core collapses to an infinitely small point
- \rightarrow Black Hole: Next class at Fiske Planetarium on "Dr. Einstein's Universe",

