The New Worlds Observer:

Opening Direct Study of Exo-planets Using External Occulters

Webster Cash

University of Colorado
\&
The NASA Institute for Advanced Concepts

Boy Have We Got A Problem!

An Earth-like Planet Is 10 Billion Times Fainter Than Its Parent Star

6 pack vs Bill Gates entire fortune
AND
Less Than 0.1 Arcseconds Away
One Hubble Resolution Element

Do there exist many worlds, or is there but a single world? This is one of the most noble and exalted questions in the study of Nature

St. Albertus Magnus (1206-1280) scholar and patron saint of scientists

Exoplanets

The Planets That Circle Other Stars
. There are probably 10,000 within 10pc (30 light years) of the Earth. Indirect means have now found over 200.

If we can observe them directly, we will have a new field of astronomy every bit as rich as extragalactic.

Artists's View of Red Dwarf with Substellar Companion MUA ESA and G. Bacon (STSC) - STScl PRCO6.310

Exploration \& Science

One doesn't discover new lands without consenting to lose sight of the shore for a very long time. Andre Gide (1869-1951)

Science requires a hypothesis suggesting knowledge of the answer while exploration has no such conceit.

New Worlds is Exploration First
Science Second

Terrestrial Planet Finder

\checkmark Must be done from space because of the atmosphere
σ Telescopes must be corrected to $\mathrm{DD} / \mathrm{BNDCHIDN}$
-to suppress scatter: $\lambda / 5000$ surface, 99.999% reflection uniformity
\hookleftarrow TPF is very difficult
\checkmark NASA has not been good to TPF lately.
> They are on indefinite hold.

External Occulters

Let's Resurrect an Old Idea

Spitzer (1962) appears to be the first
Just Keep the Starlight Out of the Telescope

Occulters

Several previous programs have looked at occulters
Used simple geometric shapes

- Achieved only 10^{-2} suppression across a broad spectral band
σ With transmissive shades
- Achieved only 10^{-4} suppression despite scatter problem

Extinguishing Poisson's Spot

Occulters Have Very Poor Diffraction Performance
The 1818 Prediction of Fresnel led to the famous episode of.
Poisson's Spot (variously Arago's Spoi

- Occulters Often Concentrate Light!

Must satisfy Fresnel Equation, Not Just the Fraunhoffer Equation
Must Create a Zone That Is:

- Deep Below 10^{-10} difffraction
- Wide A couple meters minimum
- Broad \quad Suppress across at least one octave of spectrum

Must Be Practical

- Binary

Non-transmitting to avoid scatter
Size Below 150m Diameter

- Tolerance Insensitive to microscopic errors

A Solution Exists

$$
A(\rho)=0
$$

for $\quad \rho<a$
and
$A(\rho)=1-e^{-\left(\frac{\rho-a}{b}\right)^{n}}$
for $\quad \rho>a$
for $\quad \rho>a$

Huygens-Fresnel Principle

$$
E=\frac{E_{0}}{i \lambda r} \iint A e^{i k r} d S
$$

Fresnel Approximation
$E=\frac{E_{0} e^{i k F} e^{\frac{i k s^{2}}{2 F}}}{i \lambda F} \int_{0}^{\infty} e^{\frac{i k \rho^{2}}{2 F}} \rho \int_{0}^{2 \pi} A(\theta, \rho) e^{\frac{i k \rho \cos \theta}{F}} d \theta d \rho$

Then, if circularly symmetric:
$E=\frac{E_{0} k e^{i k F} e^{i \frac{i k^{2}}{2 F}}}{i F} \int_{0}^{\infty} e^{i \frac{i \rho^{2}}{2 F}} A(\rho) J_{0}\left(\frac{k \rho s}{F}\right) \rho d \rho$

Dimensionless Natural Units

$$
\alpha=a \sqrt{\frac{k}{F}}
$$

$$
\beta=b \sqrt{\frac{k}{F}}
$$

$$
\tau=\rho \sqrt{\frac{k}{F}}
$$

Continue Integrating by Parts

Dominant Term

$$
R \leq \frac{n!}{\beta^{n}} \frac{1}{\alpha}\left(\frac{1}{\alpha}\right)^{n-1}=\frac{n!}{\alpha^{n} \beta^{n}}
$$

$$
\text { If } \beta^{2} \gg n
$$

New Code

σ Still Need Computer Simulations
$>$ e.g. Some Disagreement about Minimum Number of Petals
$>$ Direct Fresnel 2-d integral is very slow
Princeton, Goddard, NGST, CU All Working on this
\sim new cu code

- Integrate Fresnel by parts
- Yields edge integral --- like Green's Theorem
- Very Fast
- Will Allow Diffraction Analysis with Any Error

Shadow of 16 Petal Mask

Spectroscopy

\checkmark R >100 spectroscopy will distinguish terrestrial atmospheres from Jovian with modeling

Spectroscopic Biomarkers

Implementation

No pessimist ever discovered the secret of the stars or sailed an uncharted land, or opened a new doorway for the human spirit.
Helen Keller (1880-1968)

Tall Poles

\checkmark Deployment of 35 m shade to mm class tolerance
σ Acquiring and holding line of sight

F Fuel usage, orbits and number of targets
σ Stray Light - particularly solar

