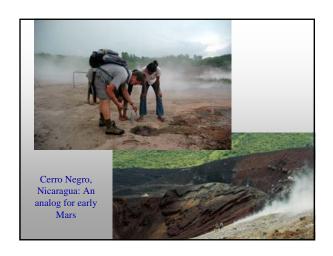
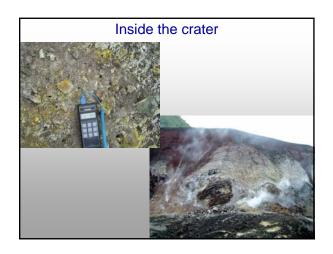
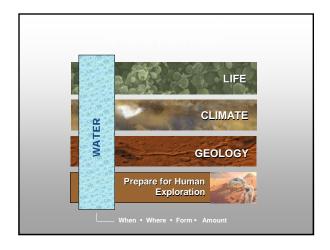
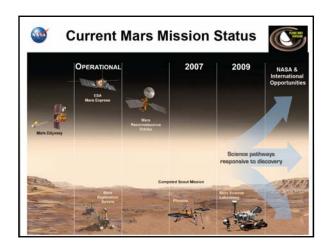
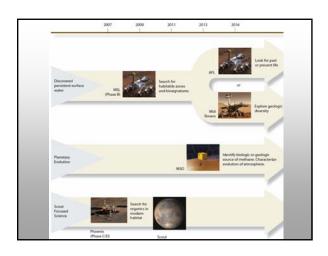

Evidence for Past Water on Mars


- The current thin, cold atmosphere prohibits liquid water from being stable on the surface.
- However, there is ample evidence for past water; indicative of a warmer and wetter climate.



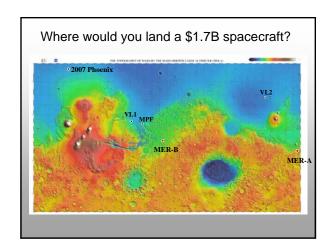



Mars and NASA


- Mars Exploration Program
 - Different than other solar system bodies in that it is an official program.
- Comprises about ½ of the science budget of NASA
 - Science = ~\$5B/yr
- Results in an official "architecture" to the mission scheme.
 - Each mission builds on prior work and enables/enhances future missions.
 - Mix of mission types competed and NASA-center

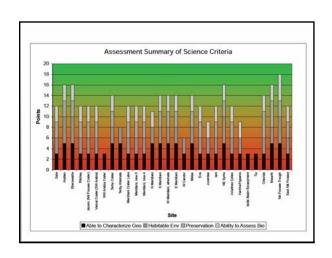
Current Mars Missions

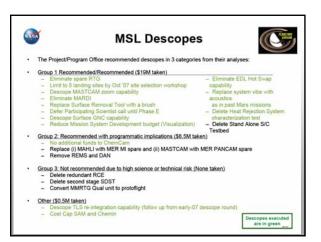
- There are currently 5 spacecraft operating at Mars.
- Mars Odyssey arrived 2001
 - Discovered huge regions of ground ice and has studied the composition of the surface
- · Mars Express (ESA) arrived start of 2004
 - High-resolution stereo imaging, subsurface radar
 - Released a lander (Beagle II), which failed.
- 2 Mars Exploration Rovers arrived Jan 2004
 - Have proven a wet history for the planet.
- Mars Reconnaissance Orbiter
 - Started mapping a couple months ago with the highest resolution cameras and spectrometers.

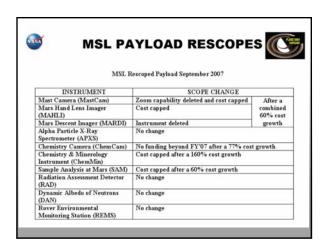


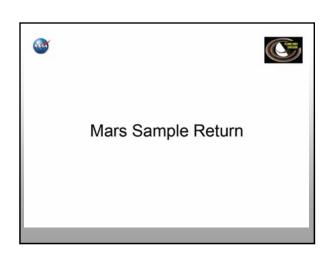
2009 MSL Key Goals

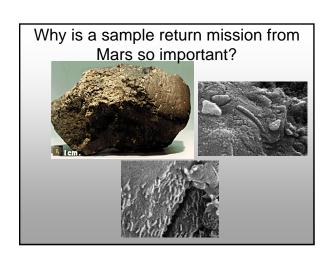
- Characterize a site that:
 - was a habitable environment.
 - · What does this mean?
 - is likely to have preserved biosignatures.
 - can be related to the "Big Picture".

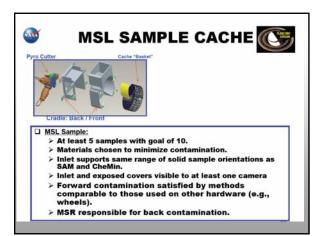



LANDING SITES FROM 1" MSL WORKSHOP DISCUSSED AT 2" WORKSHOP							
NAME	LOCATION	ELEVATION	TARGET	PROPOSER			
Nili Fossae Trough	20.93°N, 74.35°E	-0.6 km	Phyllosilicates	J. Mustard			
Holden Crater Fan	26.32°S, 325.30°E	-2.3 km	Layered Materials	Irwin, Grant, Malin Edgett, Rice			
Terby Crater	27,7435°S, 74,1137°E	-5 km	Layered Material	S. Wilson, Cohen, Dobrea			
Marwth Vallis	24.65°N, 340.1°E	~-3.1 km	Phytlosilicates	J-P Bibring, J. Michalski			
Eberswalde Crater	23.85°S, 326.75°E	-1.4 km	Delta	J. Schieber, J. Dickson, J. Rice			
Gale Crater	4.50°S, 137.35°E	-4.5 km	Interior Layered Deposits	J. Bell, N. Bridges			
W Candor	5.80°S, 284.17°E	1.8 km	Sulfate Deposits	N. Mangold			
N Meridiani	2.37°N, 6.69°E	-1.5 km	Sedimentary Layers	Edgett Malin			
Juventae Chasma	4.45°S, 298.09°E	-2.8 km	Layered Sulfates	J. Grotzinger			
Nilo Syrtis	29.16°N, 72.97°E	0.5	Phyllosilicates	J. Mustard			
Melas Chasma	9.81°S, 283.62°E	-1.9 km	Paleolake	C. Quantin			
E. Meridiani	0.01N°, 3.66°E	~-1.3 km	Sedimentary Layers	B. Hynek			
Inni Chaos	2.06°S . 342.41°E	Below -2 km	Hematite, Sulfate	T. Glotch			
Nili Fossae Crater	18.44°N, 77.58°E	-2.6 km	Valley Networks, Delta sediments	R. Harvey, J. Rice			
Eos Chasma	10.7°S, 322.05°E	~-4 km	Chert	V. Hamilton			
Meridiani Crater Lake	5.72°N, 358.03°E	1.5 km	Crater lake sediments	L. Posiolova			
NE Syrtis Major	~16.21°N, ~76.63°E	-1 km	Volcanics	R. Harvey			
Hellas/Dao Vallis	39.5°S, 82.7°E	-6 km	Valley Terminus, Layered Deposits	L. Crumpler			
Xanthe/Hypanis Vallis	11.4°N, 314.65°E	-2.6 km	Layered Deposits	L. Crumpler			
SW Arabia Terra	6.01°N, 355.60°E	-1 km	Sed. Rocks, Methane	C. Allen			
W. Arabia Crater	8.45°N, 359.09°E	-1.2 km	Sedimentary Rocks	E. Heydani			
W. Meridiani	1.7°S, 352.39°E	1.0 to -1.5 km	Sediments, Hematite	H. Newsom			
Elysium/Avenus Colles	3.05°S, 170.60°E	-2.5 km	High iron abundance	L. Crumpler			
Table Brook Brook	LE COURT TO COURT	2.5.	Waterita sinte				


Name	Location	Elevation (m)	Target Clay-bearing	Proposer
Ariadnes Colles	35.03 S, 174.17 E	-71	outcrops	E. Noe Dobrea
Ritchey Crater	28.28 S, 308.93 E	-1178	Clays, fan deposit	R. Milliken
Mawrth Vallis B1	24.5 N, 338.9 E	-3076	layered clays	J-P. Bibring
Mawrth Vallis B2	23.95 N, 341.2 E	-2220	layered clays	Bibring
Mawrth Vallis B3	23.2 N, 342.5	-2104	layered clays	Bibring
Nili Fossae	21.8 N, 78.6 E	-1158	Clays, mafics clays, possible	Mangold E. Noe Dobrea,
Terby alternate Nili Fossae trough	27.4 S, 73.5 E	-4509	paleolacustrine	S. Wilson Mustard,
alternate	21.73 N, 74.73 E	-695	,.,	Elhman Wiseman,
S. Meridiani Clays	3.35 S, 352.64 E	-1948	clays, sulfates	Arvidson
W. Meridiani Alt	3.01 S, 352.1 E	-1881	clays, sultfates	Ollila, Newsome
Chloride site 1	11.4 S, 343.4 E	-1473	chloride salts	Christensen
Chloride site 2	31.5 S, 180.8 E	1388	chloride salts	Christensen
Chloride site 3	27.9 S, 339.1 E	-44	chloride salts	Christensen
Chloride site 4	25.4 S, 346.6 E	-41	chloride salts	Christensen
Chloride site 5 W. Candor	34.36 S, 177.76 E	1373	chloride salts	Christensen
Chasma alternate	5.75 S, 285.19 E	-1517	sulfates Chemolithotrophic	Murchie
Tiu Valles	22.9N, 32.25W	~<-3000	habitat Interior Layered	F. Gomez N. Bridges,
Gale alternate Juventae	5.66 S, 137.53 E	-3385		B. Thomson
alternate	4.88 S, 297.01 E	-2600	Layered sulfates	J. Bishop
Meridiani B1	3.84 N, 359.04 E			Bibring
Meridiani B2	1.60 N, 3.55 E		Same as S,	Bibring
Meridiani B3	3.19 S, 352.20 E		Meridiani Clays	Bibring
Meridiani B4 N. Meridiani	5.0 S, 354.52 E		Sedimentary	Bibring


2009 Mars Science Laboratory


- Currently is running \$75M over budget (~3%).
- The new Associate Administrator is working hard to curtail mission overruns across the board.
 - (overruns add up to >\$5B over the past 5 years)



MSR is a High Priority Mission

- · Sample return is critical to solar system exploration:
 - Increased emphasis on returning samples from various bodies in the solar system within PSD - Stardust success!
 - Interest in Lunar sample missions increasing at NASA
- · MSR remains a MEP and US NAS priority.
 - MEP budget cuts in 2005/06 "pushed" MSR well beyond 2020
 - NRC's Astrobiology Strategy for the Exploration of Mars reinforced importance of sample return in astrobiology as well as geology, geochemistry.
 - Most recent emphasis of MSR importance
- New Strategy: <u>Advance Mars Sample Return to 2020</u>
- Sample return must be thought of as a series of missions with the 2020 mission the first one
- In order to get started on MSR NASA is making plans to place a sample cache on MSL

Mars Sample Return

- · Changing the entire architecture of the Mars Exploration Program
- Is this a good thing?
- · Is it worth giving up a mission or two to get a sample back from Mars???