Today's Class: Motion on Earth \& in Space

Professor Jack Burns

jack.burns@colorado.edu
See class syllabus at:
http://lunar.colorado.edu/~jaburns/astr2020/

- Read: Cosmic Perspective textbook Section 4.2.
- E-mail me for an office hours Zoom call.
- Complete Daily Health Form

1

Our goals for learning today

- How do we describe motion?

- How is mass different from weight?

4

The Acceleration of Gravity

- All falling objects accelerate at the same rate (not counting friction of air resistance).
- On Earth, $g \approx 10$ $\mathrm{m} / \mathrm{s}^{2}$: speed increases $10 \mathrm{~m} / \mathrm{s}$ with each second
 of falling.

Why Do You Think We Explore Space Today? Class Responses

- A unifying goal for humanity.
- Using the Moon as a stepping stone to Mars \& beyond.
- Pursuit of knowledge \& understanding the unknown.
- The ultimate human challenge.
- Dealing with overpopulation on Earth.
- Spur technological innovation.
- Promote international cooperation.
- It is human nature to explore.
- Reduce the chance for human extinction \& ensure survival of humanity.
- Mine natural resources on the Moon, asteroids, etc.
- Helps us to better understand the Earth, the environment, \& surroundings for human survival.

2

How do we describe motion?

Precise definitions to describe motion:

- Speed: Rate at which object moves speed $=\frac{\text { distance }}{\text { time }}\left(\right.$ units of $\left.\frac{m}{s}\right)$

$$
\mathrm{v}=\frac{\Delta d}{\Delta t}
$$

Example: $10 \mathrm{~m} / \mathrm{s}$

- Velocity: Speed and direction Example: $10 \mathrm{~m} / \mathrm{s}$, due east
- Acceleration: Any change in velocity
 units of speed/time $\left(\mathrm{m} / \mathrm{s}^{2}\right)$

$$
\mathrm{a}=\frac{\Delta V}{\Delta t} \text { and } \mathrm{d}=\frac{1}{2} \mathrm{at}^{2}
$$

5

The Acceleration of Gravity (g)

- Galileo showed that g is the same for all falling objects, regardless of their mass.

7

Momentum and Force

- Momentum (p) $=\operatorname{mass}(\mathrm{m}) \times$ velocity (v) or $p=m v$.
- A net force (F) changes momentum (p) such that $\mathrm{F}=\frac{\Delta p}{\Delta t}$.
- If m is constant, what is F ?

8

Class Exercise

For each of the following is there a net force on the object? Y/N

1. A car coming to a stop
2. A bus speeding up
3. An elevator moving up at constant speed
4. A bicycle going around a curve
5. A moon orbiting Jupiter

10

How is mass different from weight?

- Mass - the amount of matter in an object
- Weight - the force that acts upon an object

You are weightless in free-fall!
12

$$
\begin{gathered}
\mathrm{F}=\frac{\Delta p}{\Delta t}=\frac{\Delta(m v)}{\Delta t}=\mathrm{m} \frac{\Delta(v)}{\Delta t}=\mathrm{ma} \\
\text { or } \\
\mathrm{F}=\mathrm{ma}
\end{gathered}
$$

9

Class Exercise

For each of the following is there a net force on the object? Y/N

1. A car coming to a stop: Y
2. A bus speeding up: Y
3. An elevator moving at constant speed: N
4. A bicycle going around a curve: Y
5. A moon orbiting Jupiter: Y

11

Class Exercise

On the Moon:

A. My weight is the same, my mass is less.
B. My weight is less, my mass is the same.
C. My weight is more, my mass is the same.
D. My weight is more, my mass is less.

Class Exercise

On the Moon:

A. My weight is the same, my mass is less.
B. My weight is less, my mass is the same.
C. My weight is more, my mass is the same.
D. My weight is more, my mass is less.

14

The Equivalence Principle in General Relativity

An observer cannot distinguish between the effects of gravity and acceleration with $\mathrm{a}=\mathrm{g}$.

16

Why are astronauts weightless in space?

- There is gravity in space.
- Weightlessness is due to a constant state of free-fall.

15

Space travel using constant (1-g) acceleration

17

What have we learned?

- How do we describe motion?

- Speed = distance/time
- Speed and direction => velocity
- Change in velocity => acceleration
- Momentum = mass x velocity
- Force causes change in momentum, producing acceleration.
- How is mass different from weight?
- Mass = quantity of matter
- Weight = force acting on mass
- Objects are weightless in free-fall.
- Can 1-g of constant acceleration enable interstellar travel?

