

Experimental Dust Levitation

Mike Chaffin

Overview

Theory The Big Picture Dust Charge Levitation Heig

Experimen What do we compare? Apparatus Results Conceptual Pro

Dust Transport Time-Dependen UV Flux

Future Applications

Conclusion

Appendi

Experimental Dust Levitation

Mike Chaffin

Department of Astrophysics and Planetary Science University of Colorado at Boulder

> Mooninar April 20, 2010

Horizon Glow Observations

Experimental Dust Levitation

> Mike Chaffin

Overview

Theory The Big Picture Dust Charge Levitation Heig

Experiment What do we compare? Apparatus Results Conceptual Proc

Extensions Dust Transport Time-Dependen UV Flux

Future Applications

Conclusion

Appendi

Dust Transport

Experimental Dust Levitation

> Mike Chaffin

Overview

Theory The Big Picture Dust Charge Levitation Heig

Experiment What do we compare? Apparatus Results Conceptual Proo

Dust Transport Time-Dependen UV Flux

Future Applications

Conclusion

Appendi

A Picture of the Lunar Dark Side

Preliminary Caveats

Experimental Dust Levitation

Mike Chaffin

Overview

Theory The Big Picture Dust Charge Levitation Heig

Experiment What do we compare? Apparatus Results Conceptual Proo Extensions

Dust Transport Time-Dependen UV Flux

Future Applications

Conclusion

Appendix

Reproducing the environment of the Moon in the lab is difficult! Therefore, we won't try.

Preliminary Caveats

Experimental Dust Levitation

Mike Chaffin

Overview

- Theory The Big Picture Dust Charge Levitation Heigh
- Experiment What do we compare? Apparatus Results Conceptual Pro
- Extensions Dust Transport Time-Dependent UV Flux
- Future Application
- Conclusion
- Appendi

Reproducing the environment of the Moon in the lab is difficult! Therefore, we won't try.

Instead:

- Verify general theoretical ideas.
- Learn how to make measurements (and what measurements to make).
- Prepare experiments for the lunar surface.

Objectives

Experimental Dust Levitation

> Mike Chaffin

Overview

- Theory The Big Picture Dust Charge Levitation Heig
- Experiment What do we compare? Apparatus Results Conceptual Proo
- Extensions Dust Transport Time-Dependent UV Flux
- Future Applications
- Conclusion
- Appendi

- 1. Explain dust levitation, and observe it in the laboratory.
- 2. Examine other laboratory processes analogous to those on the Moon.
- Provide a coherent picture of lunar dust phenomena.
 Prepare for future measurements on the lunar surface.

Dust is levitated by surface electric fields.

Experimental Dust Levitation

> Mike Chaffin

Overview

Theory The Big Picture Dust Charge Levitation Heigh

Experiment What do we compare? Apparatus Results Conceptual Proo Extensions Dust Transport Time-Dependent Time-Dependent VV Flux

Future Application

Conclusion

Appendi

To test our ideas of dust levitation, we:

Measure the potentials in situ.

Dust is levitated by surface electric fields.

Experimental Dust Levitation

> Mike Chaffin

Overview

Theory The Big Picture Dust Charge Levitation Heigh

Experiment What do we compare? Apparatus Results Conceptual Proo

Dust Transport Time-Dependent UV Flux

Future Applications

Conclusion

Appendi

To test our ideas of dust levitation, we:

- Measure the potentials in situ.
- For given plasma parameters and dust grain size, we determine the charge.

$$Q_d(z) = C(r)\varphi_d(z)$$

Dust is levitated by surface electric fields.

Experimental Dust Levitation

> Mike Chaffin

Overview

Theory The Big Picture Dust Charge Levitation Heigh

Experiment What do we compare? Apparatus Results Conceptual Proo

Extensions Dust Transport Time-Dependent UV Flux

Future Applications

Conclusion

Appendi

To test our ideas of dust levitation, we:

- Measure the potentials in situ.
- For given plasma parameters and dust grain size, we determine the charge.

 $Q_d(z) = C(r)\varphi_d(z)$

 Once the charge is determined, we balance the electrostatic and gravitational force.

$$F_e(z) - F_g = Q_d(z)E(z) - m_d g = 0$$

Dust charge results from ion-electron balance.

Experimental Dust Levitation

> Mike Chaffin

Overview

Theory The Big Picture **Dust Charge** Levitation Heig

Experiment What do we compare? Apparatus Results Conceptual Prov

Extensions Dust Transport Time-Dependent UV Flux

Future Applications Conclusion Appendix Electrons and ions have different current distributions.

Dust charge at each point is determined by the balance between the electron and ion current: L(z) + L(z) = 0

$$I_e(z) + I_i(z) = 0.$$

Dust charge results from ion-electron balance.

Electrostatic-gravitational balance \implies levitation.

Electrostatic-gravitational balance \implies levitation.

Experimental Dust Levitation

> Mike Chaffin

Overview

Theory The Big Picture Dust Charge Levitation Height

Experiment What do we compare? Apparatus Results Conceptual Proc Extensions Dust Transport Time-Dependen

Future Applications Conclusion

Theory predicts an observable levitation height.

Experimental Dust Levitation

> Mike Chaffin

Overview

Theory The Big Picture Dust Charge Levitation Heigh

Experiment

What do we compare? Apparatus Results Conceptual Pro

Extensions Dust Transport Time-Dependent UV Flux

Future Applications

Conclusion

Appendi

This levitation height is well-defined only for a given radius of particle:

 $Q_d(z) = C\varphi_d(z) = 4\pi\varepsilon_0 r_d(V_d(z) - \varphi_s(z))$

So it is advantageous to perform experiments with particles of a known size.

Theory predicts an observable levitation height.

Experimental Dust Levitation

> Mike Chaffin

Overview

Theory The Big Picture Dust Charge Levitation Heigh

Experimen

What do we compare? Apparatus Results Conceptual P

Extensions Dust Transport Time-Dependent UV Flux

Future Application

Conclusion

Appendi

This levitation height is well-defined only for a given radius of particle:

 $Q_d(z) = C\varphi_d(z) = 4\pi\varepsilon_0 r_d(V_d(z) - \varphi_s(z))$

So it is advantageous to perform experiments with particles of a known size.

In practice, we must:

1. Measure the potential above the surface, and hence the electric field.

- 2. Measure plasma properties to determine the dust charge.
- 3. Compute theoretical levitation heights.
- 4. Compare theory with observation.

Laboratory Setup

Inputs to Theory

Observed Levitation Heights

Mike Chaffin

Theory The Big Picture Dust Charge Levitation Heig Experiment What do we compare? Apparatus Results Conceptual Pro

Extensions Dust Transport Time-Dependen UV Flux

Future Applications Conclusion

Appendix

What have we learned?

A curious case...

Experimental Dust Levitation

> Mike Chaffin

Overview

Theory The Big Picture Dust Charge Levitation Heig

Experiment What do we compare? Apparatus Results Conceptual Proo

Extensions

Dust Transport Time-Dependen

Future Application

Conclusior

Appendi

Lofting and spreading occur spontaneously

Experimental Dust Levitation

> Mike Chaffin

Overview

Theory The Big Picture Dust Charge Levitation Heis

Experiment What do we compare? Apparatus Results Conceptual Proc

Extensions

Dust Transport Time-Depender UV Flux

Future Application

Conclusion

Appendi

Dust can levitate, but it must first be ejected from the surface. One possible process:

Day-night potentials provide source of electric field

Experimental Dust Levitation

Mike Chaffin

Overview

Theory The Big Picture Dust Charge Levitation Heigh

Experiment What do we compare? Apparatus Results Conceptual Proc

Dust Transport Time-Dependent

Time-Dependen UV Flux

Future Applications Conclusion Appendix

Time-Dependent Ultraviolet Flux

Expectations

Static Charging

Velocity Dependence

Concept proven; Now what?

Experimental Dust Levitation

> Mike Chaffin

Overview

Theory The Big Picture Dust Charge Levitation Heigh

Experiment What do we compare? Apparatus Results Conceptual Proc

Extensions Dust Transport Time-Dependent UV Flux

Future Applications

Conclusion

Appendix

Moon-like conditions are difficult and in some cases impossible to reproduce on Earth.

In-situ measurements are required.

ASEN students are working on this right now!

Preliminary Design Review

Andrew Berg Kristian Hahn Trent Hanson Louise Martinez Ryan Mayerle Mike Siegers Shaun Valdez

< □ ► < @ ►

The Dusty Moral

Experimental Dust Levitation

> Mike Chaffin

Overview

Theory The Big Picture Dust Charge Levitation Heigh

Experimer What do we compare? Apparatus Results Conceptual Pr

Extensions Dust Transport Time-Dependent UV Flux

Future Applications

Conclusion

Appendix

- Dust can levitate once injected into a plasma sheath.
- Injection can be caused either by direct agitation of sufficiently strong electric field.
- The lunar terminator provides a useful source of time-varying electric field.
- In situ experiments are required to fully characterize the lunar plasma environment.

What's this Langmuir thing anyway?

Dust Transport

Potential Distributions

Dust Charge

~100 μm JSC-Mars-1
 Surface biased to -60 V
 Charge increases toward edge of insulator

Potential falls slower at center – dust collects fewer ions to reach equilibrium

•4 cm insulating disc •Surface biased to -60 V •Sheath effect _reduced over center