Lunar Interior



ﬁ@ History of the Moon

* Giant impact, 4.5 Gya
e Moon almost entirely molten, 4 — 4.5 Gya
e Fractional Crystallization in Magma Ocean, > 4 Gya

— Floating anorthosite crust

— Partitioning of heat producing materials between crust and
mantle

e |Impact dominated (giant basin formation), 3.5 — 4 Gya
— Interior melting from radioactive decay
— Mantle partially melts, erupt as mare
e Geologically boring, < 3.5 Gya
— Small craters
— Last lava, 1 Gya
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’-@ Tidal Evolution of the Moon

e Tidal Quality factor must change or the moon
would be at the Earth’s surface, 2 Gya

— Continent and Ocean arrangement play a big role
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ﬁ@ Inclination Problem

e Moon seems to start in inclined orbit
— Hypothesis: Well-placed giant impact (second)

 Energy needed to change the moon’s orbit
appropriately is very large

e “Thus, even an optimally aligned impact to the
Moon capable of producing the lunar / could
also cause significant disruption, and to the
degree to which this occurred, reaccretion
would tend to realign the Moon in the
Laplacian plane.”



ﬁ% Disk Torque

e Resonant interactions between the disk and
the moon

e Resonances interact with rings of disk material

 The last big ]
resonance
is a 3:1 vertical
resonance




ﬁ@ Crustal Thickness

e Calculated from gravity maps and topography
— Assumptions about isostatic balance, Airy isostasy
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ﬁ@ Crustal Thickness

e Byproduct of differentiation
— Depth of magma ocean, Efficiency of plagioclase
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ﬁ@ Dichotomy in Crustal Thickness

 Globally averaged depth, 40-45 km
* Apollo zone, 30-38 km

e Artifact from assuming crustal and mantle density
homogeneity

— Largest impact requires lower density crustal material
to coat it

e Variations in composition both laterally (KREEP)
and vertically (increasingly mafic with depth)

e Grailin 2011 combined with LRO topography will
make things better
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Mascons

e Large positive gravity anomalies

— Center of large craters, but not all large craters

e Dense mare basaltic lava flow

e Structural uplift of dense mantle materials
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Apollo S

e Seismometers laid as
Apollo 12, 14, 15, 16

e Operated for 8 years

e 1800 meteroid
Impacts

e 28 energetic, shallow
moonquakes

e 7000 weak,
deep moonquakes
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AP

e \Waves take different amounts of time to travel
through different material

Velocity Profiles
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"@ Velocity Profiles

e Uncertainty in arrival times can exceed 10 secs
— Regolith disperses seismic wave fronts

* Two independent s 77
arrival-time datasets VA N

e Network only lasted /f 1
8 of 18.6 year period | &= Pwaves

* Most recent work N S-waves
shows no velocity AR
discontinuities in "N ¥
the mantle o
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ﬁ@ Deep Moonquakes

e Very low stress drops, very weak
e Correlated with tides raised by the Earth

e Originate from 300 “nests”, repeatedly
activated

 Nests appear to be located on Moon’s
nearside

— Hypothesis: Nearside more seismically active,
correlates with mare basalts (huh?)

— Hypothesis: Signal Attenuation (cont. next slide)
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ﬁ@ Deep Seismic Sighal Attenuation

 Shear waves appear to be absent for those ray
paths that probe the deepest portions of the
mantle

e Consistent with laser ranging data suggesting
a quality factor of 30 for the moon, good
damper

e Scenario: Magma-filled fractures located in
the deep mantle are relieving small stresses
induced by Earth-raised tides
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"@ Core

e Core is smaller than other terrestrial/icy
planets and satellites, 460 km
— Density, radius, moment of inertia
— Consistent with measurements of an induced
magnetic field
e Rotational data

indicates energy
dissipation between

a molten core and #¢%
a solid mantle
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ﬁ@ Historical Magnetic Field

* Lunar samples have strong magnetizations

 Magnetization detected in orbit, but from
what depth?
e Hypothesis: Moon had internal dipole

— Difficult for such a small core

— Age constraints indicate a field that turned on late,
3.9 Gya

 Hypothesis: Large impacts are responsible
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ﬁ@ Large impacts are responsible

 Generate a plasma that propagates strong
transient magnetic fields

* High crustal fields appear to be correlated
with basin ejecta

e Correlation between some strong crustal fields
and the antipodes of some of the youngest
and largest impact basins

— Plasma cloud encircles moon and ampilifies field
diametrically opposite the impact
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ﬁ@ Both Hypotheses

e Early dynamo exits
* [ron poor regolith, does not retain signal

* Impact basins create by iron-rich impactors do
retain field

* Antipodal fields are still created via plasma

e Still questions remain on how a field could be
maintained with such a small core
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ﬁ@ Future Experiments Needed

e Seismic Network with lateral and temporal
expanse

— Characterize the core, measure waves that pass
through it

— Understand “nests”, tidal?
— Crustal thickness, dichotomy?
e Samples
— SPA, understand difference in morphology

— How deep is magnetization?
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