Lunar Laser Ranging

Jordan Mirocha

Lunar Science Seminar University of Colorado January 19 th, 2010

Outline

- History of LLR
- Measurements \& Detectors
- Science enabled by LLR
- Summary

History

- First retroreflector array positioned on lunar surface by crew of Apollo I I, July 1969
- 4 more positioned by Apollo I4, I5, and French built arrays on Soviet Luna missions

Apollo 14 retroreflector

History

- Early ranging measurements at Lick, McDonald (right), CERGA (France)
- Now, APOLLO (Apache Point Observatory Lunar Laser-ranging Operation)

History

- First measurements good to $\sim 20 \mathrm{~cm}$

- Ground station changes get this down to $\sim 2 \mathrm{~cm}$ in the 1980's (even with a smaller scope!)
- Early data still vital for studying effects with long characteristic timescales

Measurements

Measurements

- Light leaves laser on the ground...
- Best atmospheric seeing from the ground is ~1 arcsecond
- Beam diverges to 1.8 km diameter on lunar surface
- Apollo 3.8 cm diameter corner cube retroreflector only catches $\sim 4 \times 10^{-10}$ of the incoming light

Measurements

- Spread of Apollo retroreflector ~ 10 arcseconds
- Beam diverges to 20 km diameter area on Earth's surface
- A Im telescope on Earth receives only 2×10^{-9} of returning photons
- Total losses: $\sim 10^{-20}$! (not including additional problems like detector QE, mirror reflectance, ete. on ground)

The APOLLO Laser

$\lambda=532 \mathrm{~nm}$
$E_{\text {pulse }}=115 \mathrm{~mJ}$
$\nu_{\text {pulse }}=20 \mathrm{~Hz}$
$\sigma<100$ ps

- Need many pulses for multiple detections!

$$
\Rightarrow 6 \times 10^{18} \text { photons } / \mathrm{sec}
$$

Detectors

Apollo 3.8 cm retroreflector (right), and a 10 cm retroreflector just qualified for lunar environment (left)

Detectors

- Physical size of Apollo arrays is now the limiting factor

Lunar Libration

- Changing orientation due to lunar libration causes spread in return times

Future Detectors

- Retroreflectors $>10 \mathrm{~cm}$ could provide returns as good as the Apollo arrays
- However, they are more susceptible to thermal expansion, which becomes significant systematic error around $\sim 1 \mathrm{~mm}$

Science

- LLR can be used to test gravitational theory, in addition to serving as a probe of the Moon's interior
- First, must correct for:
- Precession, nutation, tidal acceleration, and the relative orientations of Earth's equator, the lunar orbit, and the ecliptic

Testing GR with LLR

I. Is the Equivalence Principle exact?

- Equality of gravitational and inertial masses

$$
M_{\text {inertial }} \times a=M_{\text {gravitational }} \times g
$$

- Nearly all alternate theories of gravity predict EP violations

Testing GR with LLR

- Weak Equivalence Principle:
- Laws of motion are the same for freely falling bodies and bodies in inertial reference frames
- Strong Equivalence Principle:
- Laws of nature are the same in uniform static gravitational fields and non-inertial reference frames

Testing GR with LLR

How does gravity pull on itself?

Testing GR with LLR

2. Does the strength of gravity vary with time?

$$
F=G \frac{m_{1} m_{2}}{r^{2}}
$$

Current LLR constraint:

$$
\frac{\dot{G}}{G}<(4 \pm 9) \times 10^{-13} / y r
$$

Testing GR with LLR

3. Do extra dimensions/new physics alter the inverse square law?

- Modifying gravity to explain dark energy has repercussions for lunar orbit
- Accuracy needed to falsify/confirm such theories is within a factor of 10 of current LLR

Testing GR with LLR

4.What is the nature of space-time?

- GR predicts that a gyroscope moving through curved space-time will precess
- "Geodetic precession" of $19.2 \mathrm{~ms} / \mathrm{yr}$
- Earth-Moon system = gyroscope (essentially)
- LLR Constraint:

$$
K_{g p}=(-1.9 \pm 6.4) \times 10^{-3}
$$

Testing GR with LLR

- Parameterized Post-Newtonian Formalism $\gamma=$ space-time curvature produced/unit mass $\beta=$ measure of gravity's non-linearity
- $\operatorname{In} \operatorname{GR}, \gamma=\beta=1$
- Current Constraints:

$$
\begin{aligned}
& (\gamma-1)=(2.1 \pm 2.3) \times 10^{-5} \\
& (\beta-1)=(1.2 \pm 1.1) \times 10^{-4}
\end{aligned}
$$

(Shapiro Delay)

Testing GR with LLR

Science	Timescale	Current (cm)	1 mm	0.1 mm
Weak Equivalence Principle	Few years	$\|\Delta \mathrm{a} / \mathrm{a}\|<1.3 \times 10^{-13}$	10^{-14}	10^{-15}
Strong Equivalence Principle	Few years	$\|\eta\|<4.4 \times 10^{-4}$	3×10^{-5}	3×10^{-6}
Time variation of G	~ 10 years	$9 \times 10^{-13} \mathrm{yr}^{-1}$	5×10^{-14}	5×10^{-15}
Inverse Square Law	~ 10 years	$\|\alpha\|<3 \times 10^{-11}$	10^{-12}	10^{-13}
PPN β	Few years	$\|\beta-1\|<1.1 \times 10^{-4}$	10^{-5}	10^{-6}

Current and future science deliverables from LLR. LLR is the best test for all but WEP.

Lunar Science with LLR

- Range measurements change due to lunar libration and tides
- Moments of inertia, lunar Love number k_{2}, and variations in libration are related to the Moon's composition, mass distribution, and internal dynamics

Lunar Science with LLR

Lunar Science with LLR

I. Core Mantle Boundary (CMB) Dissipation

- Fluid core first proven by LLR through energy dissipation by flow of fluid along CMB
- Depends on fluid core size, viscosity, CMB roughness

2. Free Physical Librations

- Could be stimulated by eddies at CMB, LLR would see as irregularities in polar wobble

Lunar Science with LLR

3. Fluid Core Moment of Inertia

- Depends on core density and radius
- Requires accurate long time span data

$$
\frac{C_{f}}{C}=(12 \pm 4) \times 10^{-4} \sim 390 \pm 30 \mathrm{~km}
$$

(uniform iron core)
4. Whole Moon Moment of Inertia

Lunar Science with LLR

$\delta \rho=$ Lower Mantle Density Contrast

Constraints on core radius from moment of inertia and Jower mantly density contrast

Summary

- LLR provides best constraints for GR (other than WEP) to date
- Also can provide valuable information of lunar interior
- However, now limited by size of Apollo arrays
- A wider distribution of larger retroreflectors would enhance sensitivity and maintain returns

Questions?

Sources

Merkowitz, Stephen. "The Moon as a Test Body for General Relativity." A White Paper to the Planetary Science Decadal Survey, 2009.

Williams, James. "Lunar Science and Lunar Laser Ranging." A White Paper Submitted to the Panel on Inner Planets, 2009.

Dickey, J.O. "Lunar Laser Ranging: A Continuing Legacy of the Apollo Program." Science, Vol. 265, 482-490. July 22., I994.

Cowen, R. "Moon's tiny core hints at earthly origin:" Science News, Vol. I55. March 27, I999.

