Lunar Laser Ranging

Jordan Mirocha

Lunar Science Seminar University of Colorado January 19th, 2010

Outline

- History of LLR
- Measurements & Detectors
- Science enabled by LLR
- Summary

History

- First retroreflector array positioned on lunar surface by crew of Apollo 11, July 1969
- 4 more positioned by Apollo 14,15, and French built arrays on Soviet Luna missions

Apollo 14 retroreflector

Distribution of arrays on lunar surface

History

 Early ranging measurements at Lick, McDonald (right), CERGA (France)

 Now, APOLLO (Apache Point Observatory Lunar Laser-ranging Operation)

History

First measurements good to ~20cm

- Ground station changes get this down to ~2cm in the 1980's (even with a smaller scope!)
- Early data still vital for studying effects with long characteristic timescales

Measurements

$$\vec{\rho} = |\vec{r}| + \vec{R}_M \cdot \hat{r} - \vec{R}_E \cdot \hat{r}$$

Wednesday, January 20, 2010

Measurements

- Light leaves laser on the ground...
 - Best atmospheric seeing from the ground is ~I arcsecond
 - Beam diverges to 1.8 km diameter on lunar surface
 - Apollo 3.8 cm diameter corner cube retroreflector only catches ~4 x 10⁻¹⁰ of the incoming light

Measurements

- Spread of Apollo retroreflector ~ 10 arcseconds
 - Beam diverges to 20 km diameter area on Earth's surface
 - A Im telescope on Earth receives only 2 x 10⁻⁹ of returning photons
- Total losses: ~10⁻²⁰! (not including additional problems like detector QE, mirror reflectance, etc. on ground)

The APOLLO Laser

- $\lambda = 532 \ nm$ $E_{pulse} = 115 \ mJ$ $u_{pulse} = 20 \ Hz$ $\sigma < 100 \ ps$
- Need many pulses for multiple detections!

 $\Rightarrow 6 \times 10^{18} photons/sec$

Detectors

Apollo 3.8cm retroreflector (right), and a 10cm retroreflector just qualified for lunar environment (left)

Apollo 15 retroreflector (300 3.8cm corner cube retroreflectors)

Detectors

Lunar Libration

 Physical size of Apollo arrays is now the limiting factor

 Changing orientation due to lunar libration causes spread in return times

Future Detectors

- Retroreflectors > 10cm could provide returns as good as the Apollo arrays
- However, they are more susceptible to thermal expansion, which becomes significant systematic error around ~Imm

Science

- LLR can be used to test gravitational theory, in addition to serving as a probe of the Moon's interior
 - First, must correct for:
 - Precession, nutation, tidal acceleration, and the relative orientations of Earth's equator, the lunar orbit, and the ecliptic

I. Is the Equivalence Principle exact?

Equality of gravitational and inertial masses

 $M_{inertial} \times a = M_{gravitational} \times g$

 Nearly all alternate theories of gravity predict EP violations

- Weak Equivalence
 Principle:
 - Laws of motion are the same for freely falling bodies and bodies in inertial reference frames
- Strong Equivalence Principle:
 - Laws of nature are the same in uniform static gravitational fields and non-inertial reference frames

How does gravity pull on itself?

2. Does the strength of gravity vary with time?

$$F = G \frac{m_1 m_2}{r^2}$$

Current LLR constraint:

$$\frac{\dot{G}}{G} < (4\pm9) \times 10^{-13}/yr$$

Wednesday, January 20, 2010

3. Do extra dimensions/new physics alter the inverse square law?

- Modifying gravity to explain dark energy has repercussions for lunar orbit
- Accuracy needed to falsify/confirm such theories is within a factor of 10 of current LLR

4. What is the nature of space-time?

- GR predicts that a gyroscope moving through curved space-time will precess
 - "Geodetic precession" of 19.2 ms/yr
- Earth-Moon system = gyroscope (essentially)
- LLR Constraint:

$$K_{gp} = (-1.9 \pm 6.4) \times 10^{-3}$$

- Parameterized Post-Newtonian Formalism
 - $\gamma =$ space-time curvature produced/unit mass β = measure of gravity's non-linearity

(LLR)

- In GR, $\gamma = \beta = 1$
- **Current Constraints:** (Shapiro Delay) $(\gamma - 1) = (2.1 \pm 2.3) \times 10^{-5}$ $(\beta - 1) = (1.2 \pm 1.1) \times 10^{-4}$

Science	Timescale	Current (cm)	1 mm	0.1 mm
Weak Equivalence Principle	Few years	∆a/a <1.3×10 ⁻¹³	10-14	10-15
Strong Equivalence Principle	Few years	η <4.4×10⁻⁴	3×10-5	3×10-6
Time variation of G	~10 years	9×10 ⁻¹³ yr ⁻¹	5×10-14	5×10-15
Inverse Square Law	~10 years	α <3×10 ⁻¹¹	10-12	10-13
PPN B	Few years	β-1 <1.1×10 ⁻⁴	10.5	10-6

Current and future science deliverables from LLR. LLR is the best test for all but WEP.

- Range measurements change due to lunar libration and tides
- Moments of inertia, lunar Love number k₂, and variations in libration are related to the Moon's composition, mass distribution, and internal dynamics

Anorthositic Crust ~587 km radius Zone of Partial Melt (Lower Mantle) -~350 km radius Fluid Outer Core ~160 km radius Solid Inner Core Middle Mantle (assuming 10% of the core has crystallized) Upper Mantle 3,474 KM

Wednesday, January 20, 2010

- I. Core Mantle Boundary (CMB) Dissipation
- Fluid core first proven by LLR through energy dissipation by flow of fluid along CMB
- Depends on fluid core size, viscosity, CMB roughness
- 2. Free Physical Librations
- Could be stimulated by eddies at CMB, LLR would see as irregularities in polar wobble

3. Fluid Core Moment of Inertia

- Depends on core density and radius
- Requires accurate long time span data

 $\frac{C_f}{C} = (12 \pm 4) \times 10^{-4} \sim 390 \pm 30 \ km$ (uniform iron core)

4. Whole Moon Moment of Inertia

 R_{c} R_{c

Constraints on core radius from moment of inertia and lower mantle density contrast

 $\delta
ho =$ Lower Mantle Density Contrast

Summary

- LLR provides best constraints for GR (other than WEP) to date
- Also can provide valuable information of lunar interior
- However, now limited by size of Apollo arrays
- A wider distribution of larger retroreflectors would enhance sensitivity and maintain returns

Questions?

Sources

Merkowitz, Stephen. "The Moon as a Test Body for General Relativity." A White Paper to the Planetary Science Decadal Survey, 2009.

Williams, James. "Lunar Science and Lunar Laser Ranging." A White Paper Submitted to the Panel on Inner Planets, 2009.

Dickey, J.O. "Lunar Laser Ranging: A Continuing Legacy of the Apollo Program." *Science*, Vol. 265, 482-490. July 22, 1994.

Cowen, R. "Moon's tiny core hints at earthly origin." Science News, Vol. 155. March 27, 1999.