

"Cosmic Microwave Background Anisotropies" Hu & Dodelson 2002

Allison Youngblood
ASTR 6000
January 26, 2012

CMB Formation

- Describe the universe before recombination.
 How does this relate to what we see today in the CMB?
- Why is the matter distribution in the universe clumpy, but the photon distribution smooth?
- Would we expect them to be the same or different?
- What is the proposed mechanism for the primordial small perturbations?

The Perturbations

- How do they work? What are the restoring forces? What do the oscillations represent?
- What's the difference between small-scale and large-scale anisotropies?
- What happens to the perturbations when the universe becomes neutral?
- How do fluctuations in a scalar field during inflation become temperature fluctuations?

Open, Flat, or Closed?

- How do we know the universe is flat from the CMB power spectrum?
- How do the peak locations provide a means to measure the physical age of the universe?

Analysis of CMB

- Why can we use a linear response theory to predict the anisotropies of the CMB?
- Why do we use spherical harmonics predict and analyze the anisotropies?

Errors/Uncertainties

- Do we expect greater uncertainties at low or high multipoles?
- What are other sources of uncertainty?
- What is the cosmic variance?

CMB Polarization

- What would this tell us?
- What's the cause of this polarization?

Damping

What causes the damping of the acoustic oscillations?

