First Year WMAP Results

FIRST-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: PRELIMINARY MAPS AND BASIC RESULTS

Bennett et al, 2003

Overview

- Observations
- Foreground
- Spectrum
- Cosmology
- Polarization

Observations

- Observe in 5 bands: K,Ka,Q,V,W (23 to 94 GHz)
- Two feed horns used to measure differences
- Temp difference measurements made into map

Observations

Foreground

FIG. 10.—False-color images representing the spectral information from multiple WMAP bands. Q band is red, V band is green, and W band is blue. A CMB thermodynamic spectrum is gray. *Top*: Three-color combination image from the Q, V, and W-band maps. The dipole and high Galactic latitude anisotropy are seen. *Bottom*: Similar false-color image but with the dipole subtracted.

Foreground

- Galactic contamination strongest in K band
- Could use a linear combination of bands to minimize galactic emission
- Or fit model of dust emission and account for it

Produces complicated errors

Foreground

- Solution: Mask out 'bad' areas
- Use dust emission map as mask
- Include ~700 point sources

S-Z Effect?

Spectrum

- Use spherical harmonic transform
 - Masks make errors correlated

• Di- and quadrupole moments found to be consistent with COBE

Spectrum

Observations

Cosmology

 TABLE 3

 "Best" Cosmological Parameters

Description	Symbol	Value	+ Uncertainty	- Uncertainty
Total density	$\Omega_{\rm tot}$	1.02	0.02	0.02
Equation of state of quintessence	W	< -0.78	95% CL	
Dark energy density	Ω_{Λ}	0.73	0.04	0.04
Baryon density	$\Omega_b h^2$	0.0224	0.0009	0.0009
Baryon density	Ω_b	0.044	0.004	0.004
Baryon density (cm ⁻³)	n_b	$2.5 imes 10^{-7}$	$0.1 imes 10^{-7}$	$0.1 imes 10^{-7}$
Matter density	$\Omega_m h^2$	0.135	0.008	0.009
Matter density	Ω_m	0.27	0.04	0.04
Light neutrino density	$\Omega_{\nu}h^2$	< 0.0076	95% CL	
CMB temperature (K) ^a	$T_{\rm CMB}$	2.725	0.002	0.002
CMB photon density (cm ⁻³) ^b	n_{γ}	410.4	0.9	0.9
Baryon-to-photon ratio	η	$6.1 imes 10^{-10}$	$0.3 imes 10^{-10}$	$0.2 imes 10^{-10}$
Baryon-to-matter ratio	$\Omega_b \Omega_m^{-1}$	0.17	0.01	0.01
Fluctuation amplitude in $8 h^{-1}$ Mpc spheres	σ_8	0.84	0.04	0.04
Low-z cluster abundance scaling	$\sigma_8 \Omega_m^{0.5}$	0.44	0.04	0.05
Power spectrum normalization (at $k_0 = 0.05 \text{ Mpc}^{-1})^{c}$	A	0.833	0.086	0.083
Scalar spectral index (at $k_0 = 0.05 \text{ Mpc}^{-1})^{\text{c}}$	n_s	0.93	0.03	0.03
Running index slope (at $k_0 = 0.05 \text{ Mpc}^{-1})^{\text{c}}$	$dn_s/d\ln k$	-0.031	0.016	0.018
Tensor-to-scalar ratio (at $k_0 = 0.002 \mathrm{Mpc}^{-1}$)	r	< 0.90	95% CL	
Redshift of decoupling	Z_{dec}	1089	1	1
Thickness of decoupling (FWHM)	$\Delta z_{ m dec}$	195	2	2
Hubble constant	h	0.71	0.04	0.03
Age of universe (Gyr)	t_0	13.7	0.2	0.2
Age at decoupling (kyr)	t _{dec}	379	8	7
Age at reionization (Myr, 95% CL)	t_r	180	220	80
Decoupling time interval (kyr)	$\Delta t_{\rm dec}$	118	3	2
Redshift of matter-energy equality	Z_{eq}	3233	194	210
Reionization optical depth	τ.	0.17	0.04	0.04
Redshift of reionization (95% CL)	Z_r	20	10	9
Sound horizon at decoupling (deg)	θ_A	0.598	0.002	0.002
Angular size distance (Gpc)	d_A	14.0	0.2	0.3
Acoustic scale ^d	ℓ_A	301	1	1
Sound horizon at decoupling (Mpc) ^d	r_s	147	2	2

Cosmology

• Fits for various parameters

	BOOMERANG	WMAP 1-year	WMAP 7-year
$100\Omega_{b}h^{2}$	3.0 ± 0.4	2.24 ± 0.09	2.249 ± 0.057
Ω_{\wedge}	0.37 ± 0.23	0.73 ± 0.04	0.727 ± 0.030
t _o (Gyr)	11.9 ± 1.6	13.7 ± 0.2	13.77 ± 0.13
Z _r		20 ± 10	10.6 ± 1.2

Polarization

Polarization

WMAP 1st year

Polarization

