Galaxy Clusters at the Edge: Temperature, Entropy Structure, & Gas Dynamics at the Virial Radius

Jack Burns and Sam Skillman Center for Astrophysics and Space Astronomy University of Colorado at Boulder

> JILA Seminar March 19, 2010

Are Clusters Accurate Probes of Cosmological Parameters? Cluster Mass Function

Are Clusters Accurate Probes of Cosmological Parameters? Cluster Gas Fraction

- Baryon fraction (f_{gas}) in X-ray clusters is potentially powerful tool as shown above (Allen et al. 2008, MNRAS, 383, 879).
- Angular diameter distance (depends on Dark Energy model) $d_A \sim f_{gas}^2$ (assume f_{gas} is constant and ICM is in hydrostatic equilibrium).

What the Dark Energy Task Force said about Galaxy Clusters:

Galaxy clusters have "the statistical potential to exceed the baryon acoustic oscillations and supernovae techniques but at present have the largest *systematic errors*. Its eventual accuracy is currently very difficult to predict and its ultimate utility as a dark energy technique can only be determined through the development of techniques that control systematics due to *non-linear astrophysical processes*."

What are the systematics?

- Gastrophysics
 - Cooling
 - Heating/feedback from SN and AGNs
- **Cluster dynamics** (hydrostatic equilibrium?)
 - Mergers
 - Turbulence & bulk flows ("sloshing")
- Nonthermal component of ICM
 - Cosmic rays (possibly ~10% of total pressure)
 - Magnetic fields (\sim 1-3 μ G)
- Cluster sample selection effects
 - Use of cool core clusters
 - Non-statistically complete samples

=> Use numerical simulations to model and correct for these biases and errors.

Potential to use Cluster Mass Function for cosmology is challenging because mass is not a directly observable quantity. Instead, we measure:

- X-ray luminosity or X-ray temperature.
- Sunyaev-Zeldovich Effect (Y ~ $\int nT dl$).
- Weak lensing shear.

Hydrostatic Equilibrium

$$\nabla \Phi = -\frac{\nabla P}{\rho}$$

Applying Gauss' Law to the above:

$$M(< r) = \frac{1}{4\pi G} \int -\frac{\nabla P}{\rho} dA$$

If cluster is spherical & P = nkT, then,

$$M(< r) = -\frac{r^2k}{\rho G \mu m_p} \left[T \frac{d\rho}{dr} + \rho \frac{dT}{dr} \right]$$

=>Need to measure T, ρ and their gradients

Are CC clusters in Hydrostatic Equilibrium?

- Burns *et al.* 2008.
- Jeltema, Hallman, Burns & Motl, 2008, ApJ, 681, 167.

 \bullet

Our results are consistent with Xray to Lensing mass ratios from Mahdavi *et al.* 2008, MNRAS, 384, 1567.

CC clusters are biased low by ~15%, just like NCC clusters. Kinetic energy of bulk gas motions contributes ~10% of total energy.

A Universal Temperature Profile for Galaxy Clusters? Loken et al. 2002, ApJ, 579, 571

BeppoSAX

Suzaku is a game-changer for measuring cluster temperatures

	S/C	Orbit apogee	$568\mathrm{km}$
		Orbital period	96 minutes
		Observing efficiency	$\sim 45\%$
	XRT	Focal length	$4.75\mathrm{m}$
		Field of view	$17'$ at $1.5 \mathrm{keV}$
			$13'$ at $8 \mathrm{keV}$
		Plate scale	0.724 arcmin/mm
		Effective area	$440 \mathrm{cm}^2$ at $1.5 \mathrm{keV}$
A CONTRACT OF A CONTRACT			$250 \mathrm{cm}^2$ at $8 \mathrm{keV}$
Ciesas The		Angular resolution	2′ (HPD)
	XIS	Field of view	$17.8' \times 17.8'$
		Bandpass	0.2 – $12 \mathrm{keV}$
		Pixel grid	1024×1024
		Pixel size	$24\mu\mathrm{m}{\times}24\mu\mathrm{m}$
		Energy resolution	$\sim 130{\rm eV}$ at $6{\rm keV}$
		Effective area	$340 \mathrm{cm^2}$ (FI), $390 \mathrm{cm^2}$ (BI) at $1.5 \mathrm{keV}$
		(incl XRT-I)	$150 \mathrm{cm^2}$ (FI), $100 \mathrm{cm^2}$ (BI) at $8 \mathrm{keV}$
		Time resolution	8 s (Normal mode), 7.8 ms (P-Sum mode)
		Low and st	able backgrounds!

X-ray Observations of PKS 0745-191

z=0.103, M_{200} =6.4x10¹⁴ M_{\odot} , T≈7 keV , r_{200} = 1.7 h_{70}^{-1} Mpc

R (kpc) 1500

1.0

R/R₂₀₀

2000

2500

1.5

1000

0.5

Suzaku Observations of Abell 1795 z=0.063, M_{200} =8.6x10¹⁴ M_{\odot} , T=5.3 keV , r_{200} = 1.9 h_{70} ⁻¹ Mpc

Suzaku Observations of Abell 1413 z=0.143, M_{500} =7.8x10¹⁴ M_{\odot} , T=7.4 keV , r_{200} = 2.2 h_{70}^{-1} Mpc

Hoshino et al. 2010, ArXiv 1001.5133, PASJ (in press).

Adaptive Mesh Refinement (AMR) Simulations of Cluster Formation and Evolution

Enzo (e.g., O'Shea et al. 2004, http://lca.ucsd.edu/portal/software/enzo)

Santa Fe Light Cone

Hallman et al., 2007, ApJ, 671, 27.

- ACDM with $\Omega_{\rm m}$ = 0.27, $\Omega_{\rm b}$ = 0.04, Ω_{Λ} = 0.73, h = 0.7, and $\sigma_{\rm 8}$ = 0.9.
- AMR achieves 15.6 h⁻¹ kpc resolution in dense regions.
- $(128 h^{-1} Mpc)^3$, 5 levels of refinement => 80 clusters with >10^{14} M_{\odot} for z = 0.
- Dark matter mass resolution is $3.1 \times 10^9 h^{-1} M_{\odot}$.
- Adiabatic gas physics.

z = 0Mass = 1.7-10 × 10¹⁴ M_o T = 1.4-4.4 keV

Temperature Isocontours

- Magenta = 3×10^5 K
- Blue = 10⁶ K
- Orange = $3x10^6$ K
- Red = 1.6x10⁷ K
- White = 5×10^7 K

=>Accretion onto clusters is not spherical!

Summary & Conclusions

- Galaxy clusters exhibit a universal outer temperature profile.
- However, this T profile suggests some deviation from hydrostatic equilibrium, especially in the outer regions of clusters. Why?
 - Clusters accrete gas nonspherically via linear filaments.
 - Bulk gas motions in ICM are important, especially in outer parts of cluster.