

Searching for Shocks in Galaxy Cluster X-ray Temperature Images Greg Salvesen, Jason W. Henning, Samuel W. Skillman, Jack O. Burns University of Colorado at Boulder

Motivation

Galaxy clusters formed from the hierarchical merging of smaller cluster members. As infalling subclusters merge into the potential well, shocks form with Mach numbers of the order a few and heat the intracluster gas. From galaxy cluster X-ray temperature maps with high spatial resolution and tight temperature constraints, Mach number distributions can be reliably mapped, giving insights into the cluster merging history. We present a new methodology for producing adaptively binned *XMM-Newton/ Chandra* X-ray temperature maps from joint spectral fitting and apply a shock finding routine to observed and simulated galaxy cluster temperature maps to probe the underlying Mach number distribution.

Galaxy Cluster X-Ray Temperature Maps from Joint Spectral Fitting

- \star A Voronoi tessellation adaptive binning scheme optimally bins a counts image into regions, each meeting a minimum S/N threshold.
- **★** XMM-Newton/Chandra spectra are extracted from each cell and jointly fitted with an APEC model to determine a temperature for that region (*Figure 1*).
- ★ Temperatures are collected for all regions, producing a temperature map that is then smoothed to remove binning artifacts (Figure 2).
- *Jointly fitting spectra from both X-ray observatories reduces temperature errors compared to maps created by fitting XMM-Newton or Chandra data only (Figure 3).

Figure 3: Histogram of Figure 2: Adaptively binned temperature temperature errors (90% map of the galaxy cluster Abell 85 (z ~ confidence level) over all 0.055, $T \sim 6.5$ keV). The binning was Voronoi binned regions determined by a weighted Voronoi within a temperature map. tessellation algorithm requiring a S/N > 5Error distributions are per cell. Temperatures were determined shown for maps of Abell 85 from joint fits to *Chandra* and *XMM-Newton* created from spectral fits to spectra (top). Voronoi binned temperature XMM-Newton only (red line), map of Abell 85 smoothed with a Gaussian Chandra only (blue line), and filter of FWHM ~50 kpc h⁻¹ (7.0 pixels). both XMM-Newton and The shock finding algorithm is applied to Chandra jointly fitted (black this smoothed temperature map (bottom). *line*). High energy channels The color bar applies to both images. The from EPIC/pn provide a blue X marks the location of the cool core. lever arm for improving fits.

Acknowledgements: This work was supported by a NASA ADP grant (NNX07AH53G). GS acknowledges support from a National Science Foundation Graduate Fellowship.

Figure 4: Representative simulated galaxy cluster temperature map created with the Enzo N-body + hydrodynamic AMR cosmological code with 5 levels of refinement and a maximum resolution of 24.4 kpc h⁻¹ (*top*). Voronoi adaptively binned temperature map of the simulated cluster (middle). Voronoi binned temperature map smoothed with a Gaussian filter of FWHM ~200 kpc h⁻¹ (8.2 pixels). The shock finding algorithm is applied to this smoothed temperature map (bottom). The color bar applies to all 3 images and the axes labelings are arbitrary.

1.50

Mach Number Distributions for Shocks

- ★ Shock finding algorithm uses temperature gradients in a galaxy cluster temperature map to calculate the distribution of Mach numbers within the cluster (Skillman et al. 2008).
- ★ We generated simulated clusters and temperature maps with the *Enzo* code to test the shock finder. \star The shock finding algorithm was applied to the smoothed temperature map of Abell 85 (Figure 2,
- (Figure 4, bottom), and the highest resolution simulated temperature map (Figure 4, top). ★ Mach number distributions are shown in *Figure 5*.

Figure 5: Mach number distributions determined by applying our shock finding code to the smoothed Abell 85 temperature map (blue 20,006 *line*), the smoothed simulated cluster map (rea *line*), and the full resolution simulated cluster map (black *line*). Distributions for M <1.4 are unreliable, as the algorithm breaks down for weakly supersonic shocks.

Conclusions and Future Work

- ★ Temperature maps of Abell 85 produced from joint spectral fitting improve constraints on temperature by 15% and 40% compared to maps generated from XMM-Newton or Chandra data alone, respectively.
- ★ Systematic offsets in temperature as measured by each observatory individually must be explored.
- ★ Mach number distributions from simulated temperature maps and adaptively binned, smoothed temperature maps show promising agreement for M > 1.4.
- ★ Extend methods to a large sample of clusters.
- ★ Incorporate temperature errors into calculating Mach number distributions and apply robust statistical tests to the shock finding algorithm.

bottom), the smoothed simulated temperature map

