ASTROPHYSICS FROM THE MOON Jack Burns

Center for Astrophysics & Space Astronomy University of Colorado at Boulder

LUNAR Lead Scientists:

- J. Burns, Principal Investigator
- E. Hallman, U. Colorado
- J. Lazio, NRL
- J. Hewitt, MIT
- C. Carilli, NRAO
- T. Murphy, UCSD
- D. Currie, U. Maryland
- S. Merkowitz, GSFC
- J. Kasper, CfA
- R. MacDowall, GSFC
- and
- D. Duncan (E/PO)
- J. Darling
- J. Stocke

JILA Astrophysics Lunch Seminar September 26, 2008

National Space Exploration Policy, Authorized by Congress

- Complete the International Space Station
- Safely fly the Space Shuttle until 2010
- Develop and fly the Crew Exploration Vehicle (Orion) no later than 2014
- Return to the Moon no later than 2020
- Extend human presence across the solar system and beyond
- Implement a sustained and affordable human and robotic program
- Develop supporting innovative technologies, knowledge, and infrastructures
- Promote international and commercial participation in exploration

NASA Authorization Act of 2005

The Administrator shall establish a program to develop a sustained human presence on the Moon, including a robust precursor program to promote exploration, science, commerce and U.S. preeminence in space, and as a stepping stone to future exploration of Mars and other destinations.

Components of the Constellation Program

Exploring the Cosmos From the Moon

Comments from NRC Study (2007)

- "Extraordinary radio-quiet of lunar farside" would be a "powerful tool to investigate the Dark Ages of the Universe ... in highly redshifted signals from neutral hydrogen".
- Imperative to subject Einstein's model of gravity to the utmost scrutiny. Lunar laser ranging is on the frontline of such tests.

Light From a Dark Age

Looking for the beginning of time ...

BigAbout 13.7 billion years ago, the universe burst intoBangexistence, creating both space and time

TIME Magazine cover story, 9/2006

How the universe grew from dark soup to twinkling galaxies

... 13.4 billion years later

Albert Einstein suggested that gravity from a massive forergound object could distort and magnify background objects. By looking through a cluster of galaxies, astronomers have now found the magnified images of much more distant galaxies

Reionization and the Dark Ages

 $n_1/n_0 = g_1/g_0 \exp(-T_*/T_s)$ where $g_1/g_0=3$, $T_*=0.068$ K

Predicted by Van de Hulst in 1944; Observed by Ewen & Purcell in 1951 at Harvard

21cm Tomography of Ionized Bubbles During Reionization is like **Slicing Swiss Cheese**

Observed wavelength ⇔ distance 21cm (1+z)

(Loeb, 2006, astro-ph/063360)

Primary Challenge for Earth Arrays: Foregrounds

Long Wavelength Array

Extragalactic: radio sources (*Di-Matteo et al. 2004*)

Lunar Advantage: No Interference

Destination: Moon!

EMERSION

et a

IMMERSON

5. Example of a lunar occultation of the Earth as observed with the upper-V burst receiver. The top frame is a computer-generated dynamic spectrum; the other plots display intersity vs. time ations at frequencies where terrestial noise levels are often observed. The 80-5 data gaps which occur every 20 m are at times when in-flight calibrations occur. The short noise pulses are devery 144 s at the highest frequencies during the occultation period are due to weak interference from the Ryle-Vonberg receiver local oscillator on occasions when both that receiver the burst receiver are tuned to the same frequency

Remaining challenge: Low Frequency Foreground •Coldest regions: $T = 100 (v/200 \text{ MHz})^{-2.7} \text{ K}$

•Highly 'confused': 3 sources/arcmin² with $S_{0.2} > 0.1 \text{ mJy}$

Solution: fitting in the spectral domain

The Global (sky-averaged) HI Signal

ROLSS: Radio Observatory for Lunar Science Sortie

A Pathfinder for a future long-wavelength farside lunar array (10-100 sq. km). Operating at 1-10 MHz (30-300 m). Array consists of three 500-m long arms forming a Y; each arm has 16 antennas.

Arms are thin polyimide film on which antennas & transmission lines are deposited.
Arms are stored as 25-cm diameter x 1-m wide rolls (0,025 mm thickness).

Laboratory Testing of Polyimide Film as Low Frequency Antenna Backbone

Experimental Set-up

- 12 24-hr duty cycles with T
 -150 C to 100 C.
- Exposed to UV with deuterium lamp during "day cycle".

Results

No significant change in material or electrical characteristics during thermal cycling. polyimide film installed on table in vacuum chamber

In collaboration with Ted Schultz and Bobby Kane, CU CASA

Solar Science with ROLSS

Type II Burst source location

Complex Type III source location

- ROLSS will produce the first high angular resolution (<1° at 10 MHz), high time resolution images of solar radio emissions (outer corona).
- ROLSS will study how high energy particles are generated on the Sun. This radiation is a danger to future astronauts.

Dark Ages Lunar Interferometer (DALI)

Big Questions in Cosmology that DALI may help to answer

- What is the correct theory of inflation (deviations from Gaussianity in 21-cm power spectrum)?
- What is Dark Energy and how does it evolve in time?
- Were there "exotic" heating mechanisms, such as Dark Matter decay, that occurred before the first stars formed?
 How did metter example into the first colorized stars

><

 How did matter assemble into the first galaxies, stars, and black holes?

Constraints on Gravitational Physics: Lunar Laser Ranging

Current Capabilities

- Accuracy $\approx 1 \text{ mm.}$
- Strong Equivalence principle $\eta < 4.5 \text{ x}$ 10⁻⁴.
- $\dot{G}/G < 10^{-12}$ per year.
- Deviation from inverse-square law is < 10⁻¹⁰ times strength of gravity at 10⁸ m scales.

Lead Scientists: T. Murphy, D. Currie, S. Merkowitz

APOLLO = Apache Point Observatory Lunar Laser-ranging Operation

Dark Energy or Alternative Gravity

 $\frac{8\pi}{2}G_N(\rho+\rho_{DE})$ H^2

 Currently envisioned to be addressed by wide-field observations from free space (JDEM). Can be tested by experiments on the lunar surface; laboratory and accelerator experiments.

Next-Generation Laser Retroreflector Array for the Moon

Reduce temporal spread by a sparse arrangement of corner cubes.

Accuracy goal = 10 µm which improves limits on gravity by factor of 1000.

Goal is to constrain covariant version of MOND (TeVeS), new non-metric forms of gravity, & Moon's liquid core. Ares V enables a fully deployed 8-m or folded, segmented 15 - 20m telescope to be deployed in a single launch.

Without Ares V, multiple launches, complex folded optics, and/or on-orbit assembly would be the only alternatives for deploying space telescopes larger than ~7-m.

LUNAR: Lunar University Node for Astrophysics Research

 DALI & ROLSS will observe the low frequency Universe from the Moon: the Dark Ages and solar coronal mass ejections.

 Gravity models will be tested with new fidelity using a next-generation lunar laser retroreflector array.

 Ares V presents opportunity to launch large aperture telescopes to L2 and the lunar surface.