Are Galaxy Clusters Precise Cosmology Probes? Cool Cores, Merger Shocks, Cosmic Rays & Radio Relics

Jack Burns Center for Astrophysics and Space Astronomy University of Colorado, Boulder

Collaborators:

E. Hallman, S. Skillman, J. Henning, B. Gantner, U. Colorado
 Brian O'Shea, Michigan State U.
 Michael Norman, University of California, San Diego

National Radio Astronomy Observatory September 17, 2008

NRAO Summer Student Class of 1975

Me at 22!

Kevin Baines, JPL John Brasunas, NASA GSFC

> Al Marscher, Alice Harding, Boston University NASA 6SFC

Are Galaxy Clusters Precise Cosmology Probes? Cool Cores, Merger Shocks, Cosmic Rays & Radio Relics

Jack Burns Center for Astrophysics and Space Astronomy University of Colorado, Boulder

Collaborators:

E. Hallman, S. Skillman, J. Henning, B. Gantner, U. Colorado
Brian O'Shea, Michigan State U.
Michael Norman, University of California, San Diego

Naval Research Laboratory September 12, 2008

Are Clusters Accurate Probes of Cosmological Parameters?

- Baryon fraction (f_{gas}) in X-ray clusters is potentially powerful tool as shown above (Allen et al. 2008, MNRAS, 383, 879).
- Angular diameter distance (depends on Dark Energy model) $d_A \sim f_{gas}^2$ (assume f_{gas} is constant and ICM is in hydrostatic equilibrium).
- Above used only cool core clusters.

What the Dark Energy Task Force said about Galaxy Clusters:

Galaxy clusters have "the statistical potential to exceed the baryon acoustic oscillations and supernovae techniques but at present have the largest **systematic errors** Its eventual accuracy is currently very difficult to predict and its ultimate utility as a dark energy technique can only be determined through the development of techniques that control systematics due to non-linear astrophysical processes."

=> Use numerical simulations to model and correct for these biases and errors.

Adaptive Mesh Refinement (AMR) Simulations of Cluster Formation and Evolution

Enzo (e.g., O'Shea et al. 2004, http://lca.ucsd.edu/portal/software/enzo)

Santa Fe Light Cone

Hallman et al., 2007, ApJ, 671, 27.

- Λ CDM with $\Omega_{\rm m} = 0.3$, $\Omega_{\rm b} = 0.04$, $\Omega_{\Lambda} = 0.7$, h = 0.7, and $\sigma_8 = 0.9$.
- AMR achieves 8-16 h⁻¹ kpc resolution in dense regions.
- $(256-512 \text{ h}^{-1} \text{ Mpc})^3$, 7 levels of refinement => 1500 clusters with >10¹⁴ M_{\odot} for z < 1
- Dark matter mass resolution is 10^{10} h⁻¹ M_{\odot}.
- Baryon physics includes radiative cooling, star formation, & feedback.
 => Approximate balance of heating and cooling.
- First simulation to produce both cool and non-cool cores in same volume.

Evolution of a Cool Core Cluster

Cool core clusters avoid major mergers with high fractional mass changes early in their histories.

Evolution of a Non-cool Core Cluster

NCC clusters suffer major mergers early in their evolution, destroying embryonic cool cores.

Comparison of Temperature & Hardness Ratio Profiles

- Simulated temperature profiles for CC & NCC clusters have notable differences beyond the cores.
- Normalized Hardness Ratio profiles reflect this difference between CC & NCC clusters in both simulations and observed (Chandra) samples.

Are CC clusters in Hydrostatic Equilibrium?

- Burns *et al.* 2008.
- Jeltema, Hallman, Burns & Motl, 2008, ApJ, 681, 167.

 \bullet

Our results are consistent with Xray to Lensing mass ratios from Mahdavi *et al.* 2008, MNRAS, 384, 1567.

CC clusters are biased low by ~15%, just like NCC clusters. Kinetic energy of bulk gas motions contributes ~10% of total energy.

Large Scale Structure Shocks: Generating Cosmic Rays

- Thermalization
- Dynamic Effects of Cosmic Rays
- Mass Estimates of Clusters
 - Can we trust hydrostatic equilibrium?
 - Effects on the Dark Energy Eq. of State
- Origin of high-energy Cosmic Rays

Shock-Finding in AMR

Skillman et al. 2008, ApJ, in press.

- Previous studies used coordinate-split analysis
- We allow for any orientation of the shock
- Rankine-Hugoniot
 Jump Conditions

 $abla \cdot ec v < 0$ $abla T \cdot
abla S > 0$ $abla T_2 > T_1$ $\rho_2 >
ho_1,$

Numerical Results of Diffusive Shock Acceleration Simulations

- Two Models:
 - With and Without pre-existing CRs (30% Pressure)

Mach Number Evolution

- Accretion shocks onto clusters.
- Accretion shocks onto filaments.
- Turbulent Flow/ merger shocks.

Simulated Radio Relics

Sort for images where extended CR Rate(outside 200 h⁻¹ kpc) is high (E_{CR, extended}/E_{CR, total} ~ 0.9-1.0)

Distribution as F(M, z)

About 15-20%
 have obvious
 merger shocks
 outside 200 kpc
 radius

Conclusions

- Galaxy clusters have potential to be the most precise tools for cosmological parameter estimation but are limited by our understanding of the astrophysics.
- Cool core (CC) clusters are assumed to be dynamically relaxed and, thus, best choice as dark energy probes. But, CC clusters are biased 15% low in mass assuming hydrostatic equilibrium.
- Shock-generated cosmic rays and B-field amplification are underappreciated nonthermal pressure components in the ICM that must be understood to realize full potential of clusters as precision probes.
- Shock morphologies look similar to radio relics. 15-20% of clusters expected to have relics.
- *Future directions:* MHD (with H. Li, LANL); model radio relics (including luminosity function) & gamma-ray emission.

LUNAR: Lunar University Node for Astrophysics Research

-1-1-1-1-1-

LUNAR Lead Scientists:

J. Burns (Principal Investigator)

- E. Hallman, U. Colorado
- J. Lazio, NRL
- J. Hewitt, MIT
- C. Carilli, NRAO
- T. Murphy, UCSD
- D. Currie, U. Maryland
- S. Merkowitz, GSFC
- J. Kasper, CfA
- R. MacDowall, GSFC