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ABSTRACT
Efforts are being made to observe the 21-cm signal from the ‘cosmic dawn’ using sky-averaged
observations with individual radio dipoles. In this paper, we develop a model of the observations
accounting for the 21-cm signal, foregrounds and several major instrumental effects. Given
this model, we apply Markov Chain Monte Carlo techniques to demonstrate the ability of
these instruments to separate the 21-cm signal from foregrounds and quantify their ability
to constrain properties of the first galaxies. For concreteness, we investigate observations
between 40 and 120 MHz with the proposed Dark Ages Radio Explorer mission in lunar orbit,
showing its potential for science return.

Key words: methods: statistical – cosmology: theory – diffuse radiation – radio lines:
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1 IN T RO D U C T I O N

One of the remaining frontiers of modern cosmology is the end of
the ‘dark ages’ and the ‘cosmic dawn’. This is the period ranging
from roughly 100 Myr (z ∼ 30) to a billion years (z ∼ 6) after the
big bang, when the first stars and galaxies formed, lighting up the
Universe. This period lies at the edge of current observational tech-
niques and is of considerable theoretical interest. The next decade
is expected to see significant improvements in observations as tele-
scopes such as the James Webb Space Telescope (JWST) and the
Atacama Large Millimeter Array go online. These instruments will
provide considerable information about galaxy formation at z �
10–15, but even these large telescopes will be hard pressed to probe
the very beginning of the cosmic dawn.

Measurements of 21-cm emission and absorption from inter-
galactic hydrogen at high redshift promise to increase greatly our
knowledge of the Universe at redshifts z � 6 (Madau, Meiksin &
Rees 1997). Experiments under way at present are concentrating on
frequencies ν � 100 MHz (z � 13.2), and are hoping to capture the
transition from an almost completely neutral Universe to an almost
completely ionized one (the epoch of reionization, or EoR). Future
observations at yet lower frequencies (higher redshifts) may probe
the epoch when the first sources formed – ‘cosmic dawn’ – and even
the preceding ‘dark ages’.

�E-mail: geraint.harker@colorado.edu

There are two main approaches to making these measurements:
using a large interferometric array to produce statistics (e.g. power
spectra), and perhaps even images, of the 21-cm brightness tem-
perature; or using a single antenna to measure the mean brightness
temperature as a function of frequency and redshift (Shaver et al.
1999). In either case, the bright foregrounds at low frequencies
present one of the most significant challenges to extracting the
21-cm signal. The difficulty is alleviated somewhat in the former
approach since an interferometer is sensitive only to fluctuations
in the foregrounds, which are small compared to the mean on the
scales of interest, but they still exceed the 21-cm fluctuations in
intensity by several orders of magnitude. Interferometric measure-
ments have other benefits too. For example, the spectrum of fluc-
tuations carries more information than the mean signal alone, and
interferometers may make it easier to identify and excise man-made
radio-frequency interference (RFI). An interferometer cannot mea-
sure the mean signal, however. Moreover, global signal experiments
designed to measure the mean brightness temperature may be much
simpler and cheaper than large arrays, and are not troubled to the
same extent by distortions caused by the Earth’s ionosphere.

The large sky temperature at these frequencies also means that
the sky makes the dominant contribution to the system temperature,
and hence to the sensitivity of the observation for a given band-
width and integration time. The brightness temperature, TB, of the
diffuse foregrounds depends on the observing frequency, ν, as TB ∼
ν−2.5 (Rogers & Bowman 2008), so interferometric measurements
during the cosmic dawn at less than 100 MHz require very long in-
tegration times or arrays with a very large collecting area. Because
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ionospheric effects also become more serious at low frequencies, it
has been suggested that the far side of the Moon, which is also free
(as yet) from RFI, would be the best and perhaps the only site for an
array to probe the cosmic dawn and dark ages (e.g. Burns & Mendell
1988; Burns 2009; Jester & Falcke 2009). Building and operating
such an array of the requisite size would be quite a formidable un-
dertaking, so global signal experiments provide the best hope for
probing the 21-cm signal at z � 15 in the near future.

The Experiment to Detect the Global EoR Signature (EDGES;
Bowman & Rogers 2010), operating at 100–200 MHz, has pi-
oneered global 21-cm measurements, recently placing limits
on how rapidly the global 21-cm signal may vary with fre-
quency, and thereby putting a lower limit on the duration of
the reionization epoch. Even from its superb radio-quiet site in
Western Australia, however, it encountered RFI from sources such
as telecommunications satellites and radio and television transmit-
ters. The signals from these may reach EDGES quite directly, or
arrive via e.g. tropospheric scattering or reflections from aircraft
and meteor trails. This requires a large fraction of the data to be dis-
carded, which would be more damaging at low frequencies where
longer integrations are required, and it imposes stringent demands
on the dynamic range of the receiver.

A dipole antenna in orbit around the Moon could avoid these
problems, since it would be free of RFI when shielded from the
Earth over the lunar far side. In addition, an antenna in space ex-
periences a simpler and more stable environment than one on the
Earth’s surface, which may allow for more straightforward calibra-
tion. The use of lunar orbit does not require anything to be landed
on the Moon’s surface, unlike for a far side array. Such a mission
concept has been developed, called the Dark Ages Radio Explorer
(DARE; Burns et al. 2011).1 In this paper, we therefore explore the
constraints that a mission such as DARE could place on a model
of the 21-cm brightness temperature between the end of the cosmic
dark ages and the start of the EoR. We aim to include all the most
important contributions to the low-frequency radio spectra mea-
sured by a dipole in lunar orbit: the redshifted 21-cm signal itself;
spatially varying diffuse foregrounds based on an empirical model
of the low-frequency radio sky; the Sun; the thermal emission of the
Moon; the reflection of emission from other sources by the Moon;
the response of the instrument, which is based on an electromag-
netic model of an antenna design proposed for the DARE mission,
and the thermal noise for a realistic mission duration. Parameters
describing all these components must be fit simultaneously from the
data since, for example, it may be that the properties of the instru-
ment cannot be computed or measured on the ground with sufficient
accuracy to allow recovery of the 21-cm signal in the presence of
the very bright foregrounds.

We therefore extend the work of Pritchard & Loeb (2010), who
used the Fisher matrix and Monte Carlo methods to predict the ac-
curacy with which models of the 21-cm signal could be constrained
by a single antenna, but who considered the simpler case of an ex-
periment which measured a single, deep spectrum (i.e. they did not
consider the variation of foregrounds over the sky), and where the
only contributions to the measured spectrum were the redshifted
21-cm signal, diffuse foregrounds and noise.

The techniques that we develop, and the basic form of our model
for the 21-cm global signal, are quite generic and may be applied to
future experiments both on the ground and in space. For concrete-
ness, we focus here on the proposed DARE mission, but a similar

1 http://lunar.colorado.edu/dare/

methodology could be applied to EDGES and other ground-based
experiments. We plan to investigate this in the near future.

We start by outlining the relevant features of our reference ex-
periment, a proposed mission to measure the 21-cm global signal
from lunar orbit, in Section 2. Then, in Section 3 we describe all the
different effects which are included in our simulations of data from
such a mission, including the parametrizations we use. We also dis-
cuss some other contributions, such as impacts of exospheric dust
on the antenna and radio recombination lines (RRLs), and justify
neglecting them in this analysis.

Constraints on the model parameters are derived using a Markov
Chain Monte Carlo (MCMC) method. In Section 4, we introduce
our implementation of this technique and, as an example, show how
well the parameters are recovered by a perfect instrument, which is
sensitive across the whole frequency band and whose properties are
known exactly. In Section 5, we consider a more realistic instrument
with an imperfectly known response, and look at the impact of
the various processes we model on the quality of our constraints.
Finally, we offer some conclusions in Section 6.

2 R E F E R E N C E E X P E R I M E N T

We base our simulations on the proposed DARE mission, a fuller
description of which will be given by Burns et al. (2011), and which
acts as our reference experiment. DARE is designed to carry a low-
frequency radio antenna in a circular, equatorial orbit 200 km above
the surface of the Moon. Data would only be taken during the part of
the orbit when the Moon blocks RFI from the Earth. Approximately
30 min out of each 127 min orbit is spent out of direct line of sight of
the Earth and outside the diffraction zone of terrestrial RFI around
the lunar limb. A conservative estimate for the total amount of useful
integration time for a mission duration of three years is 3000 h.

The primary data product will be a series of spectra at 40–
120 MHz with an integration time of 1 s and with a spectral res-
olution of around 10 kHz. The analysis in this paper assumes that
these spectra have been combined into spectra with a resolution
of 2 MHz in a number of discrete sky regions. This could be done
either by taking discrete pointings in different directions, and inte-
grating for a long time in each direction, or by scanning the pointing
direction across the sky and performing a map-making procedure to
combine the individual spectra together. In this paper, we simulate
only the final, integrated spectra, not the individual high-resolution
spectra or the process of combining them.

The antenna consists of a pair of tapered, biconical, electrically
short dipoles, designed by R. Bradley of the National Radio Astron-
omy Observatory to satisfy the requirements of the DARE mission
(Burns et al. 2011). To increase the directivity, a form of ground
plane is provided by radials extending out from the main body of
the spacecraft. The design provides a beam with a single primary
lobe with a half-power beam area of around 1–2 sr, depending on
frequency (the full width at half-maximum of the power pattern at
75 MHz is 57◦), so that at any one time the antenna is sensitive to
radiation from a large fraction of the sky. Despite the radials, the
antenna has some sensitivity to radiation from behind the spacecraft
(a backlobe, diminished by 9–15 dB). The simulated power response
of one of the dipoles as a function of angle at 75 MHz is shown in
Fig. 1. The model used to predict this pattern incorporates the de-
sign of the antennas themselves and their support structures, the
radials which form the ‘ground screen’, and the spacecraft structure
itself.

The antenna and the receiver are designed to produce a smooth
frequency response. The primary method by which the foregrounds
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Figure 1. The simulated power pattern of one of the pair of dipoles which
constitutes the DARE antenna at 75 MHz, plotted as a function of angle
on the sky. The response is normalized to unity at its maximum, and the
coordinate system is chosen such that the antenna points towards the positive
y-axis (θ = φ = 90◦). The pattern appears stretched in the θ direction, but
the combined pattern with the other dipole oriented at right angles to the
first is more symmetric.

are distinguished from the 21-cm signal is through the spectral
smoothness of the foregrounds, so it is essential that the receiving
system does not compromise this smoothness. The frequency re-
sponse of the system has been modelled, and is discussed further in
Section 3.4.

3 SI M U L AT I O N S O F M I S S I O N DATA

An overview of some of the different contributions to a spectrum
measured by low-frequency radio antenna in lunar orbit is given in
Fig. 2. Even when the antenna is oriented such that it is sensitive
mainly to an area of sky away from the Galactic Centre, the diffuse
foregrounds (which consist mainly of synchrotron radiation from

Figure 2. A comparison of the intensity of the 21-cm signal with that
of various foregrounds and the thermal noise, as a function of frequency
(bottom axis) and the corresponding redshift of the 21-cm line (top axis).
From the top (as they appear on the right-hand side of the plot), the different
lines show spectra of (1) the diffuse foregrounds, from a region of sky away
from the Galactic Centre (solid black line), (2) the quiet Sun (dot–dashed
cyan line), (3) the Moon, attenuated by being seen only through the backlobe
of our simulated antenna (dot–dashed green line), (4) the diffuse foregrounds
reflected by the Moon and entering the backlobe of the antenna (solid grey
line), (5) the 21-cm signal (solid red line in emission, dashed red line in
absorption), (6) and (7) thermal noise after 1000 h (solid blue line), and this
noise with the addition of a 1 mK systematic residual (dotted blue line) and
(8) radio emission caused by the impact of dust particles from the lunar
exosphere on the spacecraft and antenna (dot–dashed magenta line).

our own Galaxy, with some contribution from free–free emission
and extragalactic sources; see e.g. Shaver et al. 1999) are between
four and six orders of magnitude brighter than the 21-cm signal.
Indeed, there are several other contributions which dominate the
21-cm signal. In this section, we describe our models for all these
contributions, and how they are combined into a simulation of the
data returned by a lunar-orbiting dipole experiment.

3.1 The 21-cm signal

The physics behind the properties of redshifted 21-cm emission
and absorption was reviewed by Furlanetto, Oh & Briggs (2006a),
and the evolution of the 21-cm signal with redshift (or cosmic
time) was studied in more detail by Madau et al. (1997), Ciardi
& Madau (2003), Furlanetto (2006) and Pritchard & Loeb (2008).
Of most interest here is the redshift evolution of the sky-averaged
(‘global’) signal. More precisely, we look at the brightness temper-
ature difference, δTb, between the 21-cm signal and the cosmic mi-
crowave background (CMB) at the emission or absorption redshift,
where δTb < 0 indicates absorption against the CMB and δTb > 0
indicates emission. This is given by

δTb = 27xH I

(
TS − Tγ

TS

) (
1 + z

10

) 1
2

× (1 + δb)

[
∂rvr

(1 + z)H (z)

]−1

mK, (1)

where xH I is the hydrogen neutral fraction, δb is the overdensity in
baryons, TS is the 21-cm spin temperature, Tγ is the CMB temper-
ature, H(z) is the Hubble parameter, and the last term describes the
effect of peculiar velocities with ∂rvr being the derivative of the
velocities along the line of sight. Because in this paper we consider
the sky-averaged signal, we will neglect its spatial fluctuations, so
that neither δb nor the peculiar velocities will be relevant and we are
interested only in the spatial average of xH I and TS in each redshift
slice.

If the cosmological parameters are known, and in the absence of
a significant heating effect from primordial magnetic fields (Schle-
icher, Banerjee & Klessen 2009), this signal depends on the proper-
ties of the radiation which various sources emit into the intergalactic
medium (IGM), through its effects on xH I and TS. In principle, these
sources can include the decay or annihilation of dark matter particles
(Furlanetto, Oh & Pierpaoli 2006b) or e.g. Hawking radiation from
primordial black holes (Mack & Wesley 2008). We can be more
confident, however, of there being a significant contribution from
stars and from accretion on to compact objects such as black holes.
Ultraviolet (UV) radiation, coming primarily from stars, couples the
spin temperature of the 21-cm transition to the kinetic temperature
of the gas through the Wouthuysen–Field effect (‘Lyα pumping’;
Wouthuysen 1952; Field 1958, 1959), while X-ray radiation from
black holes heats the gas (Madau et al. 1997; Mirabel et al. 2011).
It is likely that sufficient Lyα radiation is produced to couple the
spin temperature to the kinetic temperature well before sufficient
X-rays are produced to heat the gas above the CMB temperature
and hence to put the 21-cm line into emission (Pritchard & Loeb
2008; Ciardi, Salvaterra & Di Matteo 2010). The properties of early
sources of X-ray and Lyα photons are highly uncertain, as is the star
formation history (Robertson et al. 2010), making observations of
the 21 cm global signal very valuable in learning about early galaxy
formation.

The effect of varying the efficiency with which Lyα and
X-rays are produced and find their way into the IGM was
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Figure 3. Details of the 21-cm global signal as a function of frequency,
relative to the CMB, for our fiducial signal model. The solid line shows the
21 cm global signal as it transitions from absorption (blue) to emission (red).
The different turning points are labelled (see text for details).

studied by Pritchard & Loeb (2010). The same paper proposed
a useful parametrization of the time evolution of the global 21-cm
signal, which we adopt here. The signal is described by five turning
points where the frequency derivative of the signal is equal to zero
(so each corresponds to a local extremum of the signal). We label
the turning points A–E (see Fig. 3), in order from the highest to the
lowest redshift, and the physical interpretation of each is as follows:

A – a minimum during the dark ages where collisional coupling
of the 21-cm spin temperature to the gas kinetic temperature begins
to become ineffective;

B – a maximum at the transition from the dark ages to the regime
where Lyα pumping by UV from the first stars begins to become
effective;

C – a minimum as X-ray heating (caused by the first accreting
black holes) starts to become effective, raising the mean tempera-
ture;

D – a maximum where the heating has saturated, before the signal
begins to decrease because of cosmic expansion and reionization,
i.e. the beginning of the EoR;

E – the endpoint of reionization, after which the signal is (very
close to) zero.

In this paper, the six parameters corresponding to the frequency
and δTB of turning points B, C and D are varied, while the positions
of A and E are fixed at (16.1 MHz, −42 mK) and (180 MHz, 0 mK),
respectively. In the absence of exotic processes, turning point A de-
pends only upon fundamental cosmological parameters and known
physics, and so its position is essentially known. Turning point E re-
lates to the details of the reionization history and, while its position
is highly unknown, here we focus on the first galaxies. The ability
of global experiments to constrain reionization has been considered
in some detail by Pritchard & Loeb (2010) and Morandi & Barkana
(2011).

The 21-cm signal is modelled as a cubic spline interpolating
these points and having zero derivative at the position of the turning
points. We will consider constraints on these parameters to be the
primary result of an experiment to measure the global 21-cm signal

at these redshifts. Clearly, many other parametrizations are reason-
able; for example, we could attempt to constrain directly the input
parameters of a physical model for the global signal, such as the
spectral shape of early stars or the fraction of Lyα which escapes
early galaxies. We have chosen the ‘turning point’ parametrization
because it is not as model-dependent, and because the 21-cm signal
for a given set of parameters is very quick to compute, which is
desirable for our Monte Carlo analysis. Turning points B, C and
D, at around 45, 65 and 100 MHz, respectively, are visible in the
spectrum shown in Fig. 8, and are shown in the context of a larger
frequency range encompassing turning points A and E in Fig. 3.

3.2 Diffuse foregrounds

Perhaps the most important foreground for a global 21-cm experi-
ment, in that it dominates in intensity and is present at some level
for all pointing directions, is the diffuse emission coming from our
Galaxy and external galaxies. Though the extragalactic foreground
may be considered to come from discrete sources, we treat it as
part of the diffuse foreground since the solid angle of the beam of
our proposed experiment is so large (around 1–2 sr) that it averages
together a great number of sources in any one pointing. The Galac-
tic contribution is larger than the extragalactic contribution, and
consists largely of synchrotron radiation, with a small contribution
from free–free (e.g. Shaver et al. 1999).

Our model for the spatial variation of the diffuse foregrounds is
the global sky model (GSM) of de Oliveira-Costa et al. (2008). The
foreground temperature measured when the spacecraft is pointing in
a given direction is obtained by convolving the GSM with the instru-
mental beam. We assume that we can observe eight approximately
independent sky areas (since our simulated beam covers around
one-eighth of the sky, depending on frequency), and that this is
done by pointing in eight different directions for equal amounts of
time, with each direction being a vertex of a spherical cube. This
gives us eight foreground spectra. These are modelled using a sim-
ilar functional form to that used by Pritchard & Loeb (2010), i.e.

log T i
FG = log T i

0 + ai
1 log(ν/ν0) + ai

2[log(ν/ν0)]2

+ ai
3[log(ν/ν0)]3, (2)

with ν0 = 80 MHz being an arbitrary reference frequency which we
choose to lie in the middle of our band, and i = 1, . . . , 8 labels the
different sky areas. The parameters {Ti

0, ai
1, ai

2, ai
3} for i = 1, . . . ,

8 constitute the 32 parameters of our diffuse foreground model.
The ‘true’ or input parameters are obtained from fits to the GSM
spectrum for each region.

This approach somewhat simplifies the problem since we have
ignored covariance between the different observed patches, treating
them as independent. Instead, a realistic experiment would likely
return a sky map containing a larger number of correlated pixels
with approximately the same amount of information as our eight
independent pixels. We leave a detailed study of map making and
the handling of correlated pixels to future work. However, it seems
likely that the overall effect of dealing properly with small corre-
lations between the patches would be to increase the error bars on
the final constraints slightly, since the foreground subtraction algo-
rithm would have less information to work with. In an extreme case
with a single all-sky integrated spectrum, the degeneracies between
foreground, signal and instrument parameters would clearly be se-
vere. This contrasts with the case for interferometric experiments,
when knowledge of the correlation properties of the foregrounds
may help somewhat with foreground subtraction since they have
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strong spatial correlations on scales larger than the pixel size in an
interferometric map (Liu & Tegmark 2011a). Correlations between
pixels then work mainly to increase the effective signal-to-noise
ratio of the measurement of the foreground in clusters of correlated
pixels.

By restricting ourselves to a third-order polynomial in log ν in
each pixel, we are focusing on a relatively optimistic case. Pritchard
& Loeb (2010) showed that this was the minimal number of param-
eters needed to characterize the foreground model of de Oliveira-
Costa et al. (2008), but the situation could be worse since this model
is based on quite limited observational data; Petrovic & Oh (2011)
have, however, given theoretical reasons to expect that the Galactic
foregrounds should be very smooth. Moreover, a recent study by
Liu & Tegmark (2011b) found that four effective parameters was
sufficient to fit a foreground model with various components, with a
total number of physical parameters several times larger. The studies
of Pritchard & Loeb (2010) showed that increasing the order of the
polynomial required to fit the foregrounds significantly worsened
the constraining power of global 21-cm experiments. It would be
straightforward to similarly explore the effects of foregrounds with
more structure here, but rather than retrace old work we chose to
focus on the effect of other sources of uncertainty.

3.3 Other foregrounds

3.3.1 The Sun

We find that it is important to include the quiet Sun in our modelling,
since this significantly affects our constraints on the 21-cm history.
Although the Sun is a bright radio source, it is compact rather than
diffuse, so even if it lies at the centre of the antenna beam its power
is diluted by a factor of the solid angle subtended by the Sun divided
by the effective solid angle of the antenna beam. Fig. 2 shows its
effective brightness temperature (the brightness temperature of an
object with the same flux density but filling the beam) for this case.
If the Sun lies away from the centre of the beam, its power is
suppressed even more.

For some of the observing time of a lunar-orbiting antenna, the
Sun will be entirely occluded by the Moon. For the rest of the
time, the Sun’s position in the antenna beam will vary and it will
contribute different amounts of power at different times, even if
its intrinsic luminosity remains perfectly steady. For that reason,
in our modelling, we assume that while the shape of the Sun’s
spectrum remains the same, the overall contribution of the Sun (i.e.
the normalization of its integrated spectrum) will be different in
each of the eight sky areas we observe. Otherwise, our model for
the Sun’s spectrum is similar to our model for the diffuse foreground
spectrum, i.e.

log T i
Sun = log T i,Sun

0 + aSun
1 log(ν/ν0)

+ aSun
2 [log(ν/ν0)]2 + aSun

3 [log(ν/ν0)]3, (3)

where i = 1, . . . , 8 again labels the different sky areas, but a1,
a2 and a3 do not carry an index, so that there are a total of 11
parameters to be fitted. The input values of these parameters are
derived from a fit to the solar spectrum shown by Zarka (2004),
which yields a1 = 1.9889, a2 = −0.3529 and a3 = 0.0407. To our
knowledge, there are no observations which probe the variability
of the solar spectrum at the level of sensitivity required for our
experiment, so it is possible that in reality it has small variations in
time, and perhaps microbursts, contrary to our assumption. This may
be tested in the next few years with ground-based observatories such
as the Murchison Widefield Array (MWA) and the Long Wavelength

Array. A full 3000 h data set from our reference mission would allow
the effect of the Sun on the final constraints to be tested by using
only those observing times for which the Sun was occluded by the
Moon.

Because we know the position of the Sun in the beam at all times
during our observations, and because ground-based observations
of the Sun with smaller beams than our proposed antenna may
provide good independent constraints on the solar spectrum, it is
possible that quite good priors may be placed on the parameters in
equation (3). In Section 5, we consider cases where these parameters
are treated as being completely free and fit only by the satellite data,
and cases where good priors are placed on them beforehand. The
different shapes of the spectra of the diffuse foregrounds and the
Sun may lead one to worry that combinations of the parameters
of these sources may be degenerate with the parameters of the
21-cm signal. In this case, what will help to disentangle the 21-cm
signal from the foregrounds is that the former is identical between
different sky areas (because the antenna beam averages over such
an enormous volume of the high-redshift Universe), while the latter
varies spatially. It may also be possible to arrange that one or two
sky areas may be observed only when the Sun is occluded by the
Moon. Except where stated otherwise, our results below assume
that two out of the eight sky areas have always been observed when
this is the case. Were this not true, one may still be able to check that
results obtained excluding times during which the Sun is in view
are consistent with results from the full data set. This assumption
does not make a significant difference to our results, but it does
allow us to examine how the presence or absence of the Sun in a
given sky area changes the correlation properties of the parameters
in Section 5.1.

During a solar burst, the radio power of the Sun can increase by
several orders of magnitude, and we would not anticipate using data
gathered during a solar burst for 21-cm work. The strength of the
bursts means, however, that they can be identified quite straight-
forwardly, and data gathered during a burst can be excluded unless
the Sun is occluded by the Moon at the time. The excluded periods
would be short compared to the lifetime of the mission (between a
few seconds and ∼1 h; Wild, Smerd & Weiss 1963), and there are
approximately tens of such bursts per year, depending on the phase
in the solar cycle (Gopalswamy et al. 2008). Therefore, we do not
expect them to significantly affect the sensitivity of the experiment.

3.3.2 The Moon

The Moon itself is a thermal radio source, with different radio wave-
lengths probing its temperature at different depths. In our band, the
temperature is ≈220 K (e.g. Salisbury & Fernald 1971; Keihm &
Langseth 1975). Since the antenna will always be pointing towards
the sky rather than towards the lunar surface, the Moon’s contribu-
tion will be suppressed, though some radiation will enter through
the antenna’s back- and sidelobes. Thus, its mean effective contri-
bution, shown in Fig. 2, ends up being around 20 K. We model the
Moon’s radiation using a single parameter – its temperature – and
neglect any frequency dependence, or dependence on phase in the
lunar cycle, which is expected to be weak given the depth probed by
these long wavelengths. Clearly, this may be an oversimplification,
but the data we have found do not yet seem precise enough to sug-
gest any specific, more sophisticated model, so this is an area that
may require further study. If the emission from the Moon is more
complicated, it is possible that the modulation of its signal as it en-
ters more or less sensitive areas of the beam may help disentangle
it from the other sources, or that pointing the antenna towards the
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Moon for some time may help constrain its emission at the expense
of a small amount of data collection time. An analysis would then
require the use of the full time series of spectra from the satellite,
rather than just the eight integrated spectra we look at here, and is
therefore beyond the scope of the current paper.

The Moon also reflects some of the radiation from the Galaxy
and other sources, and has a reflectivity of around 5–10 per cent
(e.g. Davis & Rohlfs 1964). We assume that this is constant with
frequency, so that the fraction of the incoming radiation which is
reflected is a single parameter in our model. The input value for
this parameter is chosen to be 10 per cent, though the true value is
uncertain. This reflected radiation is further suppressed, by a factor
of around 10, since it enters through the backlobe of the antenna, so
that the effective temperature of the reflected foregrounds, shown
in Fig. 2, is around two orders of magnitude below that entering the
antenna directly from the front.

3.3.3 Neglected contributions

There are some other processes which one would expect to con-
tribute to the spectra but which are not explicitly included in the
modelling. We describe some of them here, and justify neglecting
them in this analysis.

First, other planets, especially Jupiter, are known to be radio
sources at these frequencies. We expect Jupiter to have a qualita-
tively similar effect on our results as the Sun, but taking into account
the small solid angle Jupiter subtends compared to the size of our
antenna beam it is fainter than the Sun by a factor of around 10−4

(using data from Zarka 2004), and so we neglect it here. Jupiter does
experience intense bursts, but their spectrum cuts off very sharply
above around 40 MHz, so they are not expected to intrude into our
band.

RRLs (Peters et al. 2011) may comprise a foreground which is not
spectrally smooth. They are caused by transitions of electrons be-
tween atomic energy levels with very large principal quantum num-
bers, and can be seen either in absorption or emission depending on
frequency. So far, the only RRLs detected have been from carbon
atoms in our own Galaxy. The lines are narrow (around 10 kHz)
and occur at known frequencies. The high resolution of our un-
binned spectra would therefore allow them to be detected (if present)
and removed while only discarding a very small fraction of the data
and having a negligible effect on our sensitivity. Indeed, this is the
main reason for requiring high spectral resolution. Since we deal
only with binned spectra in this paper, the RRLs are assumed to
have been excised before the rest of the analysis takes place, and
we do not include the effect of these excisions on the noise levels
of the binned spectra. It is possible that the integrated contribution
of RRLs from external galaxies (redshifted by various amounts)
would leave smoother low-level features in the spectrum. This con-
tribution has been estimated by Petrovic & Oh (2011) to be very
small, however. Moreover, it is unclear whether it could mimic the
spectral features expected in the 21-cm signal and, unlike the signal,
it would not be constant over the sky.

The relatively low altitude of the assumed lunar orbit means that
the spacecraft will encounter dust particles from the highly tenuous
upper layers of the lunar exosphere. Dust impacts at orbital speeds
produce puffs of plasma which generate an electrical response in
the antenna (Meyer-Vernet 1985), and therefore could be a source
of noise. A calculation of the noise power using a model for the
height distribution of lunar dust (Stubbs et al. 2010) and for the
surface area of the spacecraft, however, gives the noise spectrum
shown in Fig. 2, at least an order of magnitude below the thermal

noise in a very deep integration, and so we neglect dust impacts in
this work.

Finally, we ignore noise or RFI reflections from other spacecraft
which may be visible from a low-altitude orbit over the lunar far
side, such as others which orbit the Moon, or those positioned at the
Earth–Moon L2 point. Reflections of RFI from the sunshade of the
JWST , for example, would be around 10−7 of the thermal noise.

3.4 The instrument

Our model for instrumental effects on the measured spectrum caused
by the radiometer system (antenna, amplifiers, receiver and digital
spectrometer) is based on that used for EDGES (see Bowman &
Rogers 2010, in particular the supplementary information). Inter-
nal calibration is performed by switching the input between the
antenna and calibration loads. While a very precise absolute cali-
bration is not necessary, it is important that the relative calibration
of different channels is very accurate, since spectral smoothness at
a level of one part in 106 is used during foreground removal, and
a relative calibration error could be confused with variations in the
sky spectrum. For wide-band systems such as DARE or EDGES,
the canonical internal calibration equation for a radiometer (e.g.
Bowman, Rogers & Hewitt 2008, their equation 3) is insufficient
because the impedance of the antenna varies strongly with fre-
quency and is not well matched to the impedance of the receiver
front-end amplifier across the entire band as it would be for a narrow-
band system. The primary result is that noise power emitted from
the amplifier towards the antenna (which is usually neglected in
narrow-band systems) can be reflected back into the receiver. This
noise can be correlated with the downstream receiver noise pro-
ducing constructive and destructive interference as a function of
frequency in the measured spectrum with a period related to the
electrical path-length between the receiver and the antenna. In or-
der to account for this uncalibrated spectral component, we use the
noise wave propagation model (Penfield 1962; Meys 1978; Wein-
reb 1982; Bowman & Rogers 2010) to represent the interaction of
a noisy receiver amplifier and the antenna impedance. Following
Meys (1978, his equations 5 and 6), we have

Tant(ν) = Ta + |	(ν)|2Tb + 2Tc|	(ν)| cos [β(ν) + φc]

+ Tsky(ν)[1 − |	(ν)|2], (4)

where Ta is the standard noise from the output port of the am-
plifier (usually called the receiver noise), Tb is the noise directed
towards the antenna from the input port of the amplifier, and Tc is
the amplitude of the correlated components of Ta and Tb such that
Tc = ε

√
TaTb, where ε is the amplitude of the correlation coefficient

and the parameter φc in equation (4) gives the phase of the corre-
lation. Tsky is the total sky brightness (T21−cm + TFG + TSun + . . .)
convolved with the antenna beam and 	(ν) = |	(ν)|eiβ(ν) is the re-
flection coefficient of the antenna due to this impedance mismatch
with the receiver.

Ta, Tb, Tc, φc, 	 and ε can be computed for a theoretical model
of the radiometer system, or estimated using measurements taken
while the satellite is on the ground. It is possible, however, that
they cannot be estimated to the required level of accuracy either
way. Rather, they may have to be estimated using the science data
themselves. In this paper, we assume that each of these parameters
is constant as a function of frequency, with the exception of the
complex reflection coefficient, 	. We further restrict the receiver
noise temperatures such that Ta ≡ Tb always, and we neglect φc

since it can be absorbed into the β term with no loss of generality.
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Figure 4. The reflection coefficient, 	(ν) = |	|eiβ , due to the impedance
mismatch between antenna and receiver for the simulated DARE radiometer
system. The top panel shows |	| and the bottom panel shows β in radians.
The sensitivity to the sky temperature scales as 1 − |	|2.

We set the input value of the receiver temperature to be 100 K and ε

to be 0.1, retaining each as a single free parameter in our model. As
was done for the antenna power pattern, 	(ν) has been computed in
an electromagnetic model of the DARE radiometer system (Burns
et al. 2011). The computed 	(ν) is shown in Fig. 4.

From equation (4), one can see that the sensitivity to the sky
temperature scales as 1 − |	|2, and so Fig. 4 demonstrates that
the system is most sensitive at around 70 MHz, with the sensitivity
tailing off somewhat at high frequency and significantly at low
frequency. By design the frequency response is very smooth, to
assist in foreground subtraction.

We also used this smoothness to guide us in finding a suitable
parametrization for 	(ν): we take as our parameters the 10 lowest
frequency coefficients of the discrete cosine transform (DCT) of
each of |	(ν)| and β(ν), giving us 20 parameters in total. The DCT
was chosen as a simple and efficient way of modelling 	(ν) as a sum
of orthogonal functions. It was chosen after some experimentation
with various transforms as the one which fit the simulated 	(ν) to
reasonable accuracy using a small number of coefficients. Since the
DCT is also simply a special case of a real, discrete Fourier trans-
form, it is very quick to compute. 	(ν) depends on the properties
of the various components of the antenna/receiver system, though,
and so in future we may hope to find a more physically motivated
parametrization that takes that into account. This would be useful if
it could reduce the number of parameters in the model or the degen-
eracies between them. To find 	(ν) given some set of parameters,
we set all higher frequency coefficients to zero and then compute
the two inverse DCTs. 10 non-zero coefficients for each of |	| and
β are used since this is the least number that allows us to fit the small
ripples in the amplitude of the simulated reflection coefficient of our
reference experiment at high frequency. The coefficients obtained
thereby are the ones we use as the input to our modelling. When we
refer to simulating a hypothetical ‘perfect’ instrument below, we
take this to mean that 	(ν) is known to be identically zero.

3.5 Thermal noise

The noise on the spectrum, for a spectral bin of width B observed
for a time t, is given by the radiometer equation

σ (ν) = Tant(ν)√
2Bt

, (5)

where the factor of
√

2 in the denominator arises from the two
independent polarizations measured by a crossed dipole antenna.
For an observation near the centre of our band, where the coldest
areas of sky have Tsky ≈ 1000 K, and for B = 2 MHz and t =
375 h (corresponding to one of the eight sky areas, observed for
one-eighth of the total integration time of 3000 h), this gives a noise
of 0.4 mK in each spectral channel. This is roughly the level of
noise above which Pritchard & Loeb (2010) found that constraints
on the positions of turning points started to be seriously degraded
in their Fisher matrix analysis. For such long integrations to be
worthwhile, systematic sources of noise must also be controlled to
at least this level; we assume that this is the case and do not attempt
to model any additional systematic noise. Systematics one might
worry about include, for example, temperature changes due to the
spacecraft passing in and out of the shadow of the Moon as it orbits,
which could affect the noise properties of the system, or leakage
of noise from other components of the spacecraft itself. The design
of the reference experiment is intended to minimize these effects:
further details may be found in Burns et al. (2011).

4 M O D E L F I T T I N G

For the fiducial case we consider, of a lunar-orbiting antenna mea-
suring the spectrum of eight independent sky regions, our model for
these eight spectra has 73 parameters:

(i) six for the 21-cm signal (frequency and temperature of three
turning points);

(ii) 32 for the diffuse foregrounds (coefficients of a third-order
polynomial in each of eight sky regions);

(iii) 11 for the Sun (a normalization parameter in each of eight
different regions, plus three parameters describing the spectral
shape);

(iv) two describing the Moon (one for its temperature and one
for its reflectivity);

(v) 22 describing the instrument (10 for the amplitude of the
reflection coefficient, |	(ν)|, 10 for its phase, β(ν), and one each
for T rcv and ε).

These parameters specify Ti
ant(ν), where i = 1. . .8 again runs

over the different sky regions, and we can generate a simulated re-
alization of the experimental data by adding noise to these spectra
according to equation (5). Having different sky regions in which
the foregrounds are different but the 21-cm signal is the same helps
to break the degeneracy between the foreground, signal and instru-
mental parameters. We use eight regions since averaging spectra
into fewer sky regions would destroy information, while splitting
the sky into more areas would mean the different spectra would not
be independent, complicating the analysis.

Given the simulated noisy spectra, we find the best-fitting param-
eter values, and confidence regions on these values, using an MCMC
algorithm (e.g. Lewis & Bridle 2002, and references therein) we
have implemented in MATLAB. This provides an efficient way to ex-
plore a high-dimensional parameter space. Since there are many
good references on MCMC, we only provide enough of a descrip-
tion of the technique here to establish some notation and allow us
to be more precise about our particular implementation.

We seek to map the posterior probability distribution P (θ |X) of
the parameters of our model. P is considered to be a function of
the vector of parameters θ , with the vector X , which contains our
simulated data, held fixed. The posterior is related to the likelihood,
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L(X|θ ), by Bayes’ theorem,

P (θ |X) ∝ L(X|θ )P (θ), (6)

where P (θ ) is the prior placed on the model parameters. For constant
priors, the likelihood gives us the posterior probability, up to an
arbitrary multiplicative constant. Our goal is to see how well the
parameters θ may be inferred given an observed data set X .

We assume that the noise in each frequency channel is Gaussian.
Then, if T i

ant(νj |θ ) is the predicted antenna temperature in the ith
sky area in the jth frequency channel given a parameter set θ , and
Ti

meas(ν j) is the ‘measured’ temperature in this sky area and channel
in a simulated data set, then the probability density of measuring
this value is given by

pij = 1√
2πσ 2

i (νj |θ )
e−[T i

meas(νj )−T i
ant(νj |θ)]2/2σ 2

i (νj |θ ), (7)

where σi(νj |θ ) is the rms noise in the channel, computed from
T i

ant(νj |θ ), the bandwidth and the integration time using equation (5).
Then, assuming that each sky area and frequency channel is inde-
pendent, the likelihood is given simply by

L(T meas|θ ) =
nareas∏
i=1

nfreq∏
j=1

pij , (8)

where T meas is a vector containing Ti
meas(ν j) for all i and j. Usually,

it is computationally simpler to work with log (L), for which the
double product becomes a double sum.

We use the Metropolis–Hastings algorithm (Hastings 1970) to
generate a sequence of random samples from the posterior distribu-
tion; this sequence of samples is a chain. To see how the algorithm
works, suppose the chain is at the position θn in parameter space.
We randomly generate another parameter vector, θn+1, according
to the ‘proposal density’ q(θn, θn+1). This vector is accepted as the
next link in the chain with a probability

α(θn, θn+1) = min

{
1,

P (θn+1|X)

P (θn|X)

}
, (9)

if q is symmetric, which is true for the proposal densities we use.
Over time the chain will explore the full parameter space with
statistical properties that allow a set of unbiased and random samples
to be extracted.

Clearly, the position of successive samples is correlated. To re-
duce this correlation and obtain approximately independent sam-
ples, we ‘thin’ the chain, retaining only one out of every nthin sam-
ples. The results we show here use nthin = 50, which allows us to
run the chains long enough to reach convergence without having
to store an extremely large number of samples. The first nburn−in

thinned samples are discarded to ensure we only use samples from
the equilibrium distribution; we find nburn−in = 104 to be sufficient.

The choice of the proposal density, q, strongly affects the compu-
tational efficiency of the algorithm. A q which is too broad makes
the acceptance ratio, 〈α〉, very small, meaning we have to draw from
q and compute L many times to obtain each new link in the chain.
A q which is too narrow forces us to take only tiny steps in pa-
rameter space, preventing us from mapping its interesting regions
in a reasonable amount of time. To avoid either of these scenar-
ios, we automate the choice of q. This requires us first to estimate
the parameter covariance matrix, C. For the first 2nburn−in thinned
samples following burn-in, we compute an estimate of C from an
estimate of the Hessian of the posterior, using the DERIVEST pack-
age. For subsequent samples, we instead estimate C directly from
the cloud of existing samples, which we have found to be more

robust. The covariance matrix, being costly to compute, is recal-
culated only after every 105 evaluations of the posterior. Because
the proposal distribution changes during a run, this means that the
chains are no longer strictly Markov. During the preparation of this
manuscript, however, it came to our attention that this approach
is very similar to the ‘adaptive Metropolis’ algorithm of Haario,
Saksman & Tamminen (2001), who prove that the chain none the
less has the desired ergodicity properties and converges correctly to
the equilibrium solution.

Having found C, we proceed to find a basis of parameter space
in which it is diagonal, and denote by θ̃ the vector of parameters
in this new basis. We choose a random subset of these parameters,
{θ̃i1 , θ̃i2 , . . . , θ̃invary

} to vary at each step, where nvary is a numeri-
cal parameter we may choose. Taking nvary = 1 typically gives us
acceptance ratios of around 70 per cent. The proposal distribution
q for this subset of the (transformed) parameters is then taken to
be a multivariate Gaussian distribution, with a diagonal covariance
matrix equal to that of the full parameter set, but keeping only the
rows and columns numbered i1, i2, . . . , invary . This choice appears
to perform well in practice.

We obtain around 105 thinned samples in a few hours on a 2.3 GHz
AMD Opteron processor. By running eight different chains, we
can apply the convergence test of Gelman & Rubin (1992), which
confirms the impression from a single chain that using this many
samples is sufficient for good convergence.

An example of marginalized parameter distributions obtained
using this method for a particular noise realization is shown in Fig. 5.
In this case, we assume a perfect instrument [	(ν) ≡ 0] observing
eight sky areas for a total of 3000 h, i.e. 375 h per sky area. Each
panel shows the joint distribution of the frequency and temperature
of one of the turning points of the 21-cm signal. We also show
the position of the input value of the parameters and the parameter
values with the highest posterior probability. The difference between
these gives a sense of how robustly the parameters may be recovered
or whether the recovered parameters may be biased in some way
by the foreground removal process. We will use this format for
displaying most of our results.

For this particular noise realization, the input parameter values
for two turning points lie within the 68 per cent confidence region,
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Figure 5. Confidence regions on turning points B, C and D of the cosmo-
logical signal, assuming a perfect instrument observing eight areas of the
sky for a total of 3000 h. The 68 per cent confidence region is in green, and
the 95 per cent confidence region is in red. For each turning point, the fre-
quency of the turning point is on the x-axis and the brightness temperature
on the y-axis. The ‘+’ shows the best-fitting parameter values, while the ‘×’
shows the parameter values which were used as inputs to the simulation.
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Figure 6. Confidence regions on turning points B, C and D of the cosmo-
logical signal, assuming a realistic instrument, and that we have no prior
information on the parameters of the instrument model and the solar spec-
trum. Eight sky regions are observed for a total of 3000 h. Colours and
symbols are as for Fig. 5, but for this and all subsequent figures the axis
scales vary.

while those for the third lie just outside its border, suggesting that
the parameters have been recovered without significant bias, even
for the most difficult turning point at low frequency (turning point
B). Further, the size of the confidence regions is small and, thus,
very promising, allowing the three turning points to be distinguished
clearly from one another.

5 R ESULTS AND DISCUSSION

Having looked at signal recovery for a perfect instrument, we now
move on to a more realistic case based on the simulated properties
of the proposed DARE satellite. We start by assuming that there is
no meaningful prior information on any of the parameters, so that
they are constrained only by the satellite science data. The confi-
dence regions for this case, for a single random noise realization
assuming a total of 3000 h of integration time (375 h per sky area),
are shown in Fig. 6. It is easy to see, noting the difference in axis
scale between Figs 5 and 6, that the parameter constraints are signif-
icantly degraded. The frequency of turning point C, for example, is
found with an error of around ±1 MHz, rather than ±0.5 MHz from
a perfect instrument. The best-fitting values of all the parameters

are somewhat offset from the true values, but the error appears to
be consistent with the confidence regions estimated from MCMC.
Turning point B is worst affected: the 68 per cent confidence region
spans a range of well over 100 mK in temperature, and extends in
frequency to below the bottom end of the range (40 MHz), where we
have truncated the scale of the plot. The constraint on its frequency
is therefore very model-dependent, and is probably best viewed as
an upper limit, ruling out a turning point above ∼48 MHz with
95 per cent confidence (this upper limit is properly computed from
the fully marginalized, one-dimensional probability distribution of
νB; see Table 1).

The temperature of the other turning points is not as well deter-
mined as their frequency, in the sense of how constraining the limits
would be for models of the dark ages, but some measurements are
still obtained. For all three turning points, the temperature is slightly
underestimated. This is simply because the temperature errors are
correlated across the band rather than because of some bias in the
method: we examine the correlations further in Section 5.1. The
correlation arises because of the difficulty of measuring the overall
normalization of the signal (as opposed to its spectral variation) in
the presence of the strong foregrounds.

Even though the parameter constraints may look weak compared
to the case for the perfect instrument of Fig. 5, the foreground pa-
rameters are very well constrained. For example, the spectral index
in one of the sky regions at 80 MHz is found to be −2.350 898 ±
0.000 042 (2σ errors), compared to a true value of −2.350 903. This
illustrates the dynamic range required for such an experiment. The
Sun, being a weaker source, does not have its spectral index deter-
mined quite so well: we find a value of 1.991 ± 0.011 at 80 MHz,
with the true value being 1.989.

Fig. 7 shows how the constraints are improved if we impose tight,
Gaussian priors on the parameters of the non-diffuse foregrounds
and the instrument, again assuming 3000 h of observation. Ti,Sun

0 is
assumed to be known to 0.1 per cent for all i, as are the temperature
and reflectivity of the Moon, while {aSun

1 , aSun
2 , aSun

3 } are known
with an error of ±0.001. The coefficients of 	(ν) are known to one
part in 106 (i.e. almost perfectly), while T rcv and ε are known to
0.1 per cent. The assumption that the reflection coefficient is known
to one part in 106 is well beyond typical expectations at present,
and is thus an optimistic prior. Most antennas are characterized at
the 1 per cent level today, but devices designed to make accurate
impedance measurements are stated in their specifications to per-
form to an accuracy of <0.1 per cent, and it is reasonable that this

Table 1. 95 per cent confidence intervals (or, in some cases, upper and lower limits) on the frequency, redshift and temperature of turning points B, C and D
for the various sets of assumptions we have considered. The first column gives a brief description of each simulation, while the second shows which figures
were plotted using data from that simulation. The remaining columns show the constraints. The first row shows the true input values of the parameters, for
comparison. All simulations assume 3000 h of observation, unless otherwise stated. A fuller description of each model is given in the relevant figure captions.

Turning point B Turning point C Turning point D
Description Figures ν/MHz z T/mK ν/MHz z T/mK ν/MHz z T/mK

True input values – 46.2 29.7 −5 65.3 20.8 −107 99.4 13.29 27

Perfect instrument 5 46.6+0.9
−1.1 29.5+0.7

−0.6 −10+22
−22 65.3+0.7

−0.6 20.7+0.3
−0.2 −111+11

−11 99.3+0.3
−0.2 13.30+0.03

−0.03 23+9
−12

No prior information 6,14 <47.6 >28.8 55+45
−112 64.3+1.3

−1.6 21.1+0.6
−0.5 −141+43

−55 100.0+0.7
−0.8 13.21+0.11

−0.10 8+61
−41

All tight priors 7,8,9 45.6+2.4
−5.2 30.1+4.1

−1.5 −7+84
−42 65.0+0.8

−0.9 20.9+0.3
−0.3 −116+18

−17 99.5+0.4
−0.3 13.27+0.05

−0.05 23+17
−15

Tight inst. priors 10 42.6+4.8
−3.1 32.3+2.7

−2.3 95+6
−111 65.3+0.7

−0.8 20.7+0.3
−0.2 −102+18

−17 99.1+0.4
−0.3 13.33+0.05

−0.05 32+18
−14

Tight non-inst. priors 11 <49.0 >28.0 25+75
−65 64.7+1.3

−1.6 21.0+0.5
−0.4 −94+34

−52 99.6+1.0
−0.8 13.26+0.11

−0.13 51+35
−48

1000 h integration 12 <48.9 >28.1 −11+108
−51 65.0+1.1

−1.5 20.9+0.4
−0.4 −125+26

−24 99.6+0.5
−0.4 13.26+0.07

−0.08 17+24
−22

10000 h integration 13 46.9+1.5
−4.4 29.3+3.2

−1.0 −9+71
−22 65.4+0.7

−0.5 20.7+0.2
−0.2 −98+16

−11 99.4+0.2
−0.3 13.30+0.03

−0.03 35+11
−11
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Figure 7. Confidence regions on turning points B, C and D of the cosmo-
logical signal, assuming a realistic instrument observing eight sky regions
for a total of 3000 h, but with tight priors on the parameters of the instrument
model, the solar spectrum and the properties of the Moon. We assume here,
as throughout, that there is no prior information on the parameters of the
diffuse foregrounds or the 21-cm signal itself. Colours and symbols are as
for Fig. 5.

level could be achieved. This topic is being actively worked on with
EDGES, the closest current analogue to DARE, in the field and the
laboratory, with a target of achieving an accuracy of one part in 104.
Furthermore, it should be possible to treat the unknown aspects of
the reflection coefficient with more physically motivated models
than the DCT, which would help to reduce the effective degrees of
freedom and so approach the desired accuracy. Our priors on T rcv

and ε are more plausible, and they could well be measured in the
lab to this level before launch.

Under these conditions, the parameter constraints approach more
closely those for the perfect instrument of Fig. 5. The main exception
is that it becomes harder to rule out turning point B lying at a much
lower frequency and higher temperature. A good measurement can
only be found at 68 per cent confidence. The 95 per cent confidence
region extends outside the band for which we have data, and any
inferences about the properties of the signal in that region depend
strongly on the assumed signal model. The shape of the confidence
region suggests that our data actually tell us the amplitude and
slope of the signal at low frequency, and that turning point B lies
somewhere on a curve consistent with that amplitude and slope
within the errors.

Since the instrumental frequency response and the non-diffuse
foregrounds are well known, the weak constraint on turning point
B compared to the perfect instrument must occur because of the
reduced sensitivity at low frequencies, caused by the large value
of |	(ν)| there. To find the position of turning point B precisely, it
may be necessary to have an instrument with better sensitivity at low
frequency, and possibly a lower minimum frequency. This is difficult
to achieve (see the steep drop in sensitivity at low frequencies in
Fig. 4), though one possible route would be a larger antenna and
ground screen, which may be awkward and expensive for a satellite
mission. Even then, it is hard to design an antenna which can cover
a frequency range which is more than a factor of ∼3 without (for
example) the antenna changing mode at the top end of the frequency
range and introducing frequency structure into the response. The
large uncertainty in current theoretical models of the signal means
that an instrument with a range of, say, 35–105 MHz would run the
risk of missing out entirely on turning point D, which we would
otherwise hope to constrain quite precisely. Fig. 7 suggests we are

40 60 80 100 120
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0.05

ν /  MHz

δT
b / 

K

Extracted
68% conf.
True

Figure 8. The mean extracted signal (dot–dashed black line) and 68 per
cent confidence limits on this mean (dashed red lines) are compared to the
‘true’ signal constructed from the input parameters to the simulation (solid
blue line). This plot assumes an instrument observing eight areas of the
sky for a total of 3000 h, with tight priors on the parameters concerning the
instrument, the Sun and the Moon, as in Fig. 7.

close enough to a measurement of turning point B that this may be
possible with some smaller tweak to the design without having to
change the current DARE frequency range.

We show how the parameter constraints of Fig. 7 translate into
constraints on the shape of the 21-cm signal in Fig. 8. Here we plot
the true signal, the mean over all the samples of the extracted signal
at each frequency, and a 68 per cent confidence interval around
this mean. The shape of the signal is recovered quite well, but the
frequency of the turning points seems, visually, to be recovered
more accurately than the temperature. The absolute normalization
of the curve is difficult to determine.

The width of the error bars is larger at the lower end of the
frequency range than at the upper end, but not to the extent that
would be expected if one were simply to use the rms thermal noise at
each frequency to determine the error bar, since the sky temperature
in the lowest frequency channel is >10 times that in the highest
frequency channel, and this is the most important contributor to the
thermal noise. Instead, the errors across the whole band are highly
correlated, since the shape of the signal is reconstructed only from
the six parameters giving the position of the turning points.

Before moving on from the case where we have good prior in-
formation on the properties of the Sun, the Moon and the instru-
ment, we illustrate the errors on individual parameters which can
be achieved in this case by showing the marginalized distributions
of a subset of them in Fig. 9. It is also reassuring to be able to check
that the distributions seem fairly smooth and well behaved. Compli-
cated, multimodal distributions (or, for example, strongly curving
degeneracies between different parameters) would be awkward for
the sampler we have implemented here, and might require a more
sophisticated method to sample them efficiently.

We now wish to consider whether the improvement between
Figs 6 and 7 comes from our better knowledge of the non-diffuse
foregrounds (in particular the Sun) or of the instrument. To this end,
in Fig. 10 we show results obtained using the tight priors on 	(ν)
given above, but reverting to weak priors on the spectral parameters
of the Sun.

The results for turning points C and D are almost as good as
for the previous case, showing that superb knowledge of the instru-
ment is the most important factor in extracting the 21-cm signal
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Figure 9. One-dimensional marginalized distributions of the parameters for the case when we have tight priors on the properties of the instrument, the Sun
and the Moon, as in Figs 7 and 8. The vertical, red, dashed line shows the input value of the parameter. The names of the parameters given in each panel are as
in the text, except that the DCT coefficients of |	| and β are labelled gi

DCT and β i
DCT, respectively.

accurately, though constraints on turning point B are notably de-
graded. Foreground parameters are also measured more precisely
than for the case of Fig. 6: for example, the error on the spectral
index of the Sun at 80 MHz is reduced by a factor of about 6. If the
instrumental calibration can be improved by using the spectra at full
time and frequency resolution, or by introducing extra mechanisms
for internal calibration, then this would clearly be very desirable,
and should be the subject of further study.
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Figure 10. Confidence regions on turning points B, C and D of the cosmo-
logical signal, assuming a realistic instrument observing eight sky regions
for a total of 3000 h, but with tight priors on the parameters of the instrument
model. Colours and symbols are as for Fig. 5.

By contrast with Fig. 10, Fig. 11 shows the confidence regions
we derive when we assume tight priors on the spectrum of the Sun
(obtained perhaps by ground-based observations), but relax the pri-
ors on the coefficients of the instrumental response to their original
size. The constraints on the signal parameters are improved only a
little over those of Fig. 6, with the overall temperature normalization
being especially hard to recover. None the less, external constraints
on the solar spectrum would be valuable as a consistency check.
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Figure 11. Confidence regions on turning points B, C and D of the cosmo-
logical signal, assuming a realistic instrument observing eight sky regions
for a total of 3000 h, and with tight priors on the parameters of the solar
spectrum and the Moon. Colours and symbols are as for Fig. 5.
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Figure 12. Confidence regions on turning points B, C and D of the cosmo-
logical signal, assuming a realistic instrument observing eight sky regions
for a total of 1000 h, and with tight priors on the parameters of the instrument
model, the solar spectrum and the Moon. Colours and symbols are as for
Fig. 5. This figure should be compared to Fig. 7, which makes the same
assumptions and differs only in the amount of integration time.

Finally, we look at the effect of changing the available integration
time. Results so far have used 3000 h of data; for Fig. 12 we assume
instead only 1000 h of data, as may occur if the satellite is able
to observe for only one year. Otherwise, the assumptions are the
same as for Fig. 7, i.e. tight priors on both the instrument and the
non-diffuse foregrounds are assumed.

The effect is as one might expect, with confidence regions on the
parameters being enlarged somewhat. Turning points C and D can
still be localized: a single year of data from our reference experiment
could yield a detection of the first astrophysical sources of heating
in the Universe, and the start of the EoR. It becomes impossible
to obtain anything other than an upper limit on the frequency of
turning point B, however: the sensitivity at the low frequencies is
simply not sufficient for a clear measurement of its position.

To make sure that a realistic instrument can find a firm, 2σ detec-
tion of the frequency of turning point B given sufficient integration
time, we show results for 10 000 h of observation in Fig. 13. In this
case, the 2σ contours do indeed close above 40 MHz, though there
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Figure 13. Confidence regions on turning points B, C and D of the cosmo-
logical signal, assuming a realistic instrument observing eight sky regions
for a total of 10000 h, and with tight priors on the parameters of the instru-
ment model, the solar spectrum and the Moon. Colours and symbols are as
for Fig. 5. This figure should be compared to Figs 7 and 12, which make the
same assumptions and differ only in the amount of integration time.

is still a significant degeneracy between the frequency and tempera-
ture of turning point B. The positions of turning points C and D are
measured with improved accuracy compared to our baseline case,
though further study of such deep integrations may need the possible
systematics to be considered more carefully. An integration of this
length would be challenging from space, needing either a mission
of long duration or a very high observing efficiency (possibly both).
It is likely that the requisite noise level in the vicinity of turning
point B can be achieved more easily by modifications to the design
of the spacecraft or radiometer system. Better constraints on turning
point B might also come by extending the frequency coverage to
lower frequencies.

We summarize the constraints on the parameters of the signal
for all the different assumptions we have considered in Table 1.
Here, we show 95 per cent confidence intervals (or, in some cases,
upper or lower limits) on the frequency, redshift and temperature
of the turning points, and record the figures for which each set of
assumptions was used.

5.1 Correlation between parameters

The contour plots we have shown allow one to see clearly if the
inferred frequency and temperature of a given turning point are
correlated, or in other words if there is a degeneracy between these
two parameters. The frequency, νB, and temperature, TB, of turning
point B, for example, are clearly anticorrelated in all our figures.
Such correlations may exist between all our parameters, and allow
one to pick out possible degeneracies. Therefore, in Fig. 14, we show
a scaled version of the covariance matrix of the parameters, such that
a value of 1 (−1) in pixel {i, j} indicates that the value of parameters
i and j in the MCMC samples is perfectly (anti)correlated, with a
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Figure 14. The scaled covariance matrix of all the parameters of the model,
for a realistic instrument and assuming no meaningful prior information
on the parameter values, as for Fig. 6. By the ‘scaled’ covariance matrix,
we mean that each pixel shows the correlation coefficient between two
parameters, where a value of zero implies no correlation, and a value of 1
(−1) means perfect (anti)correlation. The 1s on the diagonal come about
because each variable is perfectly correlated with itself. The order of the
parameters is given in Table 2. Note that parameters 63 (T1,Sun

0 ) and 64

(T2,Sun
0 ) are set to be identically zero since the Sun is assumed to be occluded

by the Moon in sky regions 1 and 2, which accounts for the obvious stripe
at this position. This figure is best viewed in colour, to make the difference
between correlations (blue) and anticorrelations (red) more clear.
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Table 2. Numbering of the rows of the scaled covariance matrix in Fig. 14

Row/column number Parameter description

1–2 Frequency and temperature of turning point B
3–4 Frequency and temperature of turning point C
5–6 Frequency and temperature of turning point D
7–14 Ti

0, i = 1, . . . , 8

15–22 ai
1, i = 1, . . . , 8

23–30 ai
2, i = 1, . . . , 8

31–38 ai
3, i = 1, . . . , 8

39 Effective temperature of the Moon
40 Reflectivity of the Moon
41–50 DCT coefficients of |	(ν)|
51–52 T rcv and ε

53–62 DCT coefficients of β(ν)
63–70 Ti,Sun

0 , i = 1, . . . , 8

71–73 aSun
1 , aSun

2 and aSun
3

value of zero indicating no correlation. The key to the numbering
of the rows and columns of the image is given in Table 2.

As expected, parameters 1 and 2 (νB and TB) are easily seen
to be anticorrelated, with the correlation coefficient between them
here being −0.69. Other strong correlations are clearly apparent. For
example, the block structure near the diagonal comes about because
the parameters within one group, such as the normalization of the
foreground temperatures in the different regions, Ti

0, are strongly
correlated with each other. When a parameter outside this group is
varied, the foregrounds in each region will all have to change in a
similar way to compensate, introducing a correlation.

Some of the other features of the covariance matrix are straight-
forward to understand. For example, the temperatures of turning
points C and D are strongly anticorrelated with the foreground tem-
perature, Ti

0, for all i: an overall increase in the brightness tempera-
ture of the 21-cm signal can be compensated for by a decrease in the
brightness of the foregrounds in every region of the sky. This very
strong anticorrelation may help to explain why the inferred tem-
peratures of the turning points become positively correlated with
each other, an effect which is evident in many of our figures. It is
more difficult to find ‘interesting’ constraints on the temperatures of
the turning points than on the frequencies. The similar temperature
offsets of the different turning points for any given noise realization
may, however, allow us to recover the overall shape of the signal
well, even if its absolute normalization is uncertain. The anticorrela-
tion between the temperature of turning point B and the foreground
temperature is less strong than for the other turning points, but this
is mainly because of the larger statistical error on the temperature
of turning point B.

The difficulty of pinning down the overall normalization of the
21-cm signal might be mitigated somewhat if we could fix its tem-
perature at some frequency using external or theoretical constraints.
To some extent we do this already by fixing the positions of turn-
ing points A and E, which lie outside the observed band, and this
appears to be insufficient. The best candidate for a normalizing
point inside the DARE band is probably turning point D: looking at
equation (1), if xH I ≈ 1 (reionization not yet seriously under way)
and TS � Tγ (heating has saturated), the other terms can be com-
puted from well-constrained cosmological parameters and could be
assumed to be known. Interferometric experiments may be able to
shed some light on the value of xH I and TS and hence provide a nor-
malization indirectly. An EDGES-like experiment might also span
both the frequency of turning point D and high frequencies at which

xH I � 1 so the signal is known. It would face similar problems to
our reference experiment in constraining the large-scale spectral
shape, however, and so it is not clear it could provide a much better
temperature for turning point D.

Some features of the correlation matrix are more subtle: for
example, there is a striking anticorrelation between the normal-
ization of the solar spectrum in the different sky regions, Ti,Sun

0 ,
and the running of the spectral index of the diffuse foregrounds,
ai

2. This appears to come about because of the inverted spectrum
of the Sun relative to the spectrum of the diffuse foregrounds:
increasing TSun

0 has a larger relative effect at high frequency,
where the diffuse foregrounds are weaker, and so the spectrum
of the diffuse foregrounds is made steeper at high frequencies to
compensate.

Including the effect of the Sun also impacts the correlation struc-
ture of the other foreground parameters. In this simulation, we
assumed that the contribution of the Sun to sky areas 1 and 2
(rows 63 and 64) was identically zero, because these areas were
observed while the Sun was occluded by the Moon. This leads to
the obvious stripe at this position in the correlation matrix. One
can easily see that the correlations between the parameters of the
diffuse foregrounds in areas 1 and 2 are stronger than for the other
sky areas: they have less freedom to vary independently when there
is no solar contribution to take up the slack. This feature, and the
anticorrelation between ai

2 and Ti,Sun
0 , justifies our assertion in Sec-

tion 3.3 that it is important to include the effect of the Sun in the
modelling.

Degeneracies between the instrumental parameters other than
β(ν) (rows 41–53) appear to be very complex. This may be an arte-
fact of our parametrization of 	(ν) in terms of DCT coefficients,
though it is hard to know in the absence of a more physically mo-
tivated parametrization. Our main results assume tighter priors on
these parameters than were used to make Fig. 14, which would
make their correlations with the foreground and signal parameters
less important. Although beyond the scope of this paper, it is possi-
ble that some alternative instrument design would produce smaller
degeneracies between instrument and signal parameters, so that
this sort of correlation analysis might help in optimizing the instru-
ment design. This could be quite dependent on the signal model and
parametrization though, and at present it seems better to concentrate
on producing a smooth instrument response that can be described
by a small number of parameters.

5.2 Comparison to other work

In this paper, we have made use of an MCMC approach to es-
timate constraints on the 21-cm global signal. There has been a
certain amount of previous work making use of the Fisher ma-
trix approximations to the likelihood, in the restricted case that the
experiment genuinely sees the full sky. The initial work by Sethi
(2005) in this area assumed that foregrounds could be removed
separately and completely and so led to very optimistic predictions
for cosmological constraints. More in line with our approach here,
Pritchard & Loeb (2010) accounted for the need to simultaneously
fit the foregrounds and the signal and introduced the turning point
parametrization that we have used throughout this paper. Most re-
cently, Morandi & Barkana (2011) investigated constraints on more
general models of reionization.

The confidence regions obtained using strong priors on the in-
strumental and non-diffuse foreground parameters, and assuming
3000 h of data collection, are comparable to those found by Pritchard
& Loeb (2010) for a 500 h observation of a single sky area (their
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fig. 11). Fitting a model with many more parameters, as we do here,
clearly degrades the constraints we can obtain on the parameters
of interest for a given amount of integration time. Encouragingly,
though, this comparison shows that the degradation is not catas-
trophic, and observing for a factor of a few longer allows us to
recover the loss.

It would be desirable to compare to the larger body of work
concentrating on probing the EoR with the global 21-cm signal
(e.g. Morandi & Barkana 2011), using appropriate models for
the frequency response (e.g. that of EDGES) and for the obser-
vational strategy, which is somewhat different for ground-based
experiments. While our technique is applicable for models of the
21-cm signal other than the turning point parametrization used
here, the signal during reionization is likely to be much more de-
generate with the foregrounds and instrumental response than the
turning point model. We defer a test of this statement to future
work.

Probes of reionization other than the 21-cm line were studied
by Pritchard, Loeb & Wyithe (2010), who discussed what current
astrophysical priors can tell us about reionization. Their frame-
work could easily be extended to account for global 21-cm exper-
iments. Constraints from e.g. the CMB and the Lyα forest would
not necessarily be applicable directly to the positions of the turning
points in the parametrization we use here. Rather, constraints on
the turning points from global 21-cm experiments could be trans-
formed into constraints on the underlying physical model (the star
formation history, the efficiency of X-ray production, etc.), and
the other astrophysical constraints would also be applied in that
space.

6 C O N C L U S I O N S

We have presented a model for the data from a proposed lunar-
orbiting satellite to measure the global, redshifted 21-cm signal
between 40 and 120 MHz. Fitting the parameters of this model
to a realistic simulated data set using an MCMC algorithm yields
constraints on the 21-cm signal that are comparable to those found
using much simpler models for the foregrounds and instrument,
despite the fact that we use the data to constrain ≈73 parameters,
rather than 10. The key assumptions used in extracting the signal are
that the foregrounds are smooth, that the instrumental response is
also smooth and can be determined reasonably well by independent
measurements, and that the 21-cm signal, averaged over the solid
angle of our antenna beam, is constant across the sky while the
foregrounds are not.

A mission of reasonable duration (∼3 yr) can find the position
of the bottom of the ‘cosmic dawn’ absorption trough in our fidu-
cial model with an accuracy of around ±1 MHz in frequency and
±20 mK in temperature (2σ errors), provided that the instrumen-
tal response has been well characterized. The frequency position
of the peak in emission at the onset of reionization can be found
to within ±0.5 MHz, while ‘turning point B’, marking the onset
of Lyα pumping, can be determined with a 1σ error of around
±2.5 MHz. For a shorter mission, of e.g. 1000 h, these constraints
degrade somewhat, and it may only be possible to find an upper limit
on the frequency of turning point B. A mission of 10000 h allows
a good measurement of the frequency of turning point B, with a
2σ confidence interval that lies entirely within the DARE frequency
band.

We have examined the effect of using prior information on the
non-diffuse foregrounds, which may be amenable to measurement
from the ground, and on the instrumental parameters. Priors on the

foregrounds do not help a great deal, though clearly it will still
be valuable to have independent, ground-based measurements of
the foregrounds, to inform our modelling and to check that our
measurements are consistent. Tightened priors on the instrument
model, however, which correspond to improved calibration, reduce
the statistical errors. They may also help to reduce the importance of
temperature errors which are correlated across the frequency band,
and which result in an uncertainty in the overall normalization of the
21-cm brightness temperature. Even if this correlation is present,
it is likely that the shape of the 21-cm signal can be recovered
accurately, since the absolute error on the temperature of each of
the three turning points tends to be similar.

Interferometric experiments must also perform foreground sub-
traction, to an accuracy of around one part in 103 for the diffuse
Galactic emission, and to one part in 106 or even 108 for bright
point sources (Datta, Bowman & Carilli 2010). In this sense, arrays
such as MWA, the Low Frequency Array and the Precision Array to
Probe the Epoch of Reionization should characterize the properties
of the Galactic and extragalactic foregrounds and validate the as-
sumption that they can be modelled using functions which deviate
little from power laws. They differ from experiments such as DARE
or EDGES, however, in that they will use observations of specific
point sources for calibration of gain and bandpass in a way that is
not possible for sky-averaged experiments, since the latter cannot
isolate the contribution to the measured spectrum from an individ-
ual source. For this reason, upcoming arrays have not been designed
to achieve an intrinsically smooth bandpass that can be quantified
with only a few parameters, and therefore will likely shed little
light on the calibration or instrument modelling for sky-averaged
experiments.

In this paper, we have focused on a particular reference experi-
ment to illustrate our techniques. The methodology developed here
is very general and can easily be extended to other global 21-cm ex-
periments. As global 21-cm experiments continue to improve from
their current relative infancy, there will be a need for improved
techniques of statistical analysis. We have taken some early steps
in that direction.

It is worth reiterating, however, that there are several other stages
in the data analysis which must be passed before the methodol-
ogy of this paper can be applied. Individual spectra taken with a
short cadence (of e.g. 1 s) must be combined together using a map-
making procedure to produce something like the eight independent
spectra seen here. The frequency response must be internally cal-
ibrated, for example by toggling the receiver input between the
antenna feeds and calibration loads. Narrow features such as RRLs
or, in the case of ground-based experiments, RFI, must be excised.
All these steps become more complicated for ground-based exper-
iments. For the map making, an experiment fixed to the ground
would not have the complete control over the pointing direction
provided by a satellite, and would not have access to the whole sky.
Moreover, the ionosphere effectively causes the sky seen by the
antenna to vary with time. Internal calibration is made more awk-
ward by changes in temperature and atmospheric conditions, while
a space environment is more predictable. Finally, RFI is likely to
be considerably more prevalent than RRLs. The main effects of
these earlier steps on the MCMC method are likely to be the intro-
duction of non-Gaussianity to the noise on the frequency spectra,
and correlation between different sky areas, both of which affect
the computation of the likelihood. It is not clear whether some
of these effects could be captured with extra nuisance parameters
in the MCMC. It will be important to study the preliminary anal-
ysis steps and their impact on the final extraction step in future
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work, especially if our formalism is to be adapted for use with
ground-based experiments.
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