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ABSTRACT
One approach to extracting the global 21-cm signal from total-power measurements at low
radio frequencies is to parametrize the different contributions to the data and then fit for
these parameters. We examine parametrizations of the 21-cm signal itself, and propose one
based on modelling the Ly α background, intergalactic medium temperature and hydrogen
ionized fraction using tanh functions. This captures the shape of the signal from a physical
modelling code better than an earlier parametrization based on interpolating between maxima
and minima of the signal, and imposes a greater level of physical plausibility. This allows less
biased constraints on the turning points of the signal, even though these are not explicitly fit
for. Biases can also be alleviated by discarding information which is less robustly described
by the parametrization, for example by ignoring detailed shape information coming from
the covariances between turning points or from the high-frequency parts of the signal, or by
marginalizing over the high-frequency parts of the signal by fitting a more complex foreground
model. The fits are sufficiently accurate to be usable for experiments gathering 1000 h of data,
though in this case it may be important to choose observing windows which do not include
the brightest areas of the foregrounds. Our assumption of pointed, single-antenna observations
and very broad-band fitting makes these results particularly applicable to experiments such
as the Dark Ages Radio Explorer, which would study the global 21-cm signal from the clean
environment of a low lunar orbit, taking data from the far side.

Key words: methods: statistical – cosmology: theory – dark ages, reionization, first stars –
diffuse radiation – radio lines: general.

1 IN T RO D U C T I O N

The sky-averaged or ‘global’ 21-cm signal, δTb(z), is the mean
differential brightness temperature of the 21-cm line of hydrogen,
relative to the cosmic microwave background (CMB), as a function
of redshift or observed frequency. The amplitude of the signal is
determined by the amount of neutral hydrogen present and by the
relative number of electrons in the ground and excited states of
the 21-cm transition, which is often defined in terms of the spin
temperature, Ts, of the transition. Ts depends in turn on the kinetic
temperature, Tk, of the gas, and on the efficiency with which Ts

can be driven towards Tk, and away from the CMB temperature,
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by collisions and by Ly α coupling (the Wouthuysen-Field effect;
Wouthuysen 1952; Field 1958). δTb(z) is, therefore, sensitive to the
evolution of a variety of different radiation fields: ionizing radiation,
which destroys neutral hydrogen; X-rays, which can heat the gas
and raise Tk; and Ly α, which causes Wouthuysen-Field coupling.
This makes it a valuable probe of sources of radiation and heating
up to the end of the epoch of reionization at z ≈ 6 (see e.g. Pritchard
& Loeb 2012, and references therein).

To make inferences about the properties of the high-redshift
Universe from radio observations at the relevant frequencies
(<200 MHz), it is useful to have models for δTb(z) that can be fit
to the data and compared with each other. We note that some of the
information contained in the signal, especially about the radiation
fields which affect it most directly, may be extracted in a relatively
model-independent way (Mirocha, Harker & Burns 2013), and that
it may be possible to extract the signal as a residual without explic-
itly fitting for it during foreground removal (Liu et al. 2013; Switzer
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& Liu 2014). None the less, we generally deal with parametrized
models. These parameters may be physical – describing assump-
tions about, for example, the spectra of early sources, the efficiency
of different types of star formation and the mass of star-forming
haloes – and we then require a code which can compute the radia-
tion backgrounds from the evolving population of sources, and their
effect on the 21-cm signal. At the other end of the scale, we can
choose a flexible parametric form which we hope can describe the
shape of δTb(z) without having to specify the details of the physics
in advance, such as a cubic spline, as in Pritchard & Loeb (2010).

The fitting is complicated by the fact that the redshifted
21-cm spectrum is superimposed on that of bright astrophysical
foregrounds, and is observed by an instrument with a frequency re-
sponse which may be complicated and/or known only through care-
ful calibration. One approach to this problem is to find parametrized
models for the foregrounds, instrument and any other components
of the observed spectrum (or spectra, if multiple pointings are used
in order to gather more independent information on the foregrounds
and the instrument), and fit them simultaneously with the parame-
ters of the 21-cm signal. This entails searching what may be a high-
dimensional parameter space, which one may do with a Markov
Chain Monte Carlo sampler (Harker et al. 2012), nested sampling
(Harker 2015) or similar methods. This allows us to rigorously char-
acterize the errors, study the degeneracies between foreground and
signal parameters, and so on, but may require the likelihood (and
therefore a realization of the signal) to be computed many times.
This places requirements on the computational cost of our signal
model, as well as on its flexibility and accuracy.

The aim of this paper is to study different parametrizations of
δTb(z), comparing their ability to represent the signal faithfully, to
retain the astrophysical information in the measured spectrum, and
to be used in a signal extraction pipeline where the cost of com-
puting the model signal may be important. This is timely because
a number of projects (current or proposed) aim to detect the 21-cm
global signal, e.g. EDGES (Rogers et al. 2015), LEDA (Greenhill
& Bernardi 2012), BIGHORNS (Sokolowski et al. 2015) and SCI-
HI (Voytek et al. 2014). EDGES, especially, has already produced
tentative constraints on the rapidity of reionization (�z > 0.06)
from observations between 100 and 200 MHz (Bowman & Rogers
2010). We describe the setup of these experiments in general terms
in Section 2, then, for concreteness, focus more specifically on the
Dark Ages Radio Explorer (DARE; Burns et al. 2012; Burns et al.
in preparation). Our parametrizations of the signal are introduced
in Section 3, and we then describe the process of extracting the
signal from the data in Section 4. The quality of the recovery is
compared for different parametrizations and experimental setups in
Section 5, which we discuss further in Section 6 before offering
some conclusions in Section 7.

2 EXPERIMENTA L SETUP

We consider a pointed experiment, that is it takes integrated low-
frequency radio spectra in a number of discrete directions rather
than, say, adopting some sort of scanning approach. We therefore
concentrate on the case where we have some small number of
independent spectra from which we wish to extract the global signal.
In the case of DARE, the maximum number of independent pointings
is ∼8, since the antenna power pattern is broad (the beam has a full
width at half-maximum of tens of degrees, depending on frequency).
All else being equal, a larger number of pointings should improve
our constraints, since they provide more independent information
on the foregrounds and the instrument. If a very large fraction of the

sky is covered, however, this implies that some spectra will include
brighter regions near the Galactic Centre, reducing our sensitivity.
This implies a tradeoff which we examine later.

In designing a global signal experiment, including designing a
suitable antenna, the optimal frequency range must also be consid-
ered. A very low frequency experiment to study the dark ages would
encounter significant problems if conducted from the ground, be-
cause of the ionosphere (Datta et al. 2014; Vedantham et al. 2014),
but might also require a large antenna which could cause problems
for a space mission, so we do not consider it here. We wish to include
the start of the cosmic dawn in our analysis, which suggests starting
at 40 MHz or lower, while a practical antenna can offer sensitivity
and a smooth beam over perhaps a factor of 3 in frequency, sug-
gesting a maximum of around 120 MHz. This will probably allow
an experiment to capture the start of reionization, but not the end.
We will generally consider a frequency window of 35–120 MHz,
though we will also look at the effects of narrower ranges.

At each frequency, the sky temperature seen by the antenna is
an integral of the true sky over the antenna power pattern. The true
sky includes both the 21-cm signal and the foreground signal. The
parametrization of the signal is our main concern here, and so we
treat the foregrounds very simply, assuming they can be described
by a polynomial in log (ν)–log (T) for each pointing, where ν is
frequency. The coefficients of this polynomial, which constitute the
parameters of our foreground model, are computed from the global
sky model of de Oliveira-Costa et al. (2008). This is done by first
integrating the sky model over the power pattern of the antenna at a
large number of frequencies for each pointing we wish to consider,
and then computing a polynomial fit in log (ν)–log (T). Because of
this subsequent fitting stage, the power pattern we assume for the
antenna is not important; we take it to be Gaussian, so that the
computation can be done efficiently using the routines in HEALPY,1

which is based on the HEALPIX (Górski et al. 2005) package.2

We assume a simple model for the instrument response: the cali-
brated noise-free (modelled) spectrum is given by

Tmod(ν) = G(ν)Tsky(ν) + Trcv(ν), (1)

where Trcv is the receiver temperature, which we assume to be
a constant. The noise on a frequency channel of width �ν after
an integration time tobs is then given by the radiometer equation,
σ = Tmod/

√
2tobs�ν, assuming two polarizations are averaged to-

gether. For the high sky temperatures at these frequencies, Trcv

therefore makes a relatively minor contribution to the noise temper-
ature unless G is very small, so although we assume it to be 100 K
for concreteness, this has little influence on our results.

3 TH E 2 1 - C M G L O BA L S I G NA L A N D
PA R A M E T R I Z AT I O N S

Our model for the 21-cm signal is computed with the Acceler-
ated Reionization Era Simulations (ARES) code,3 first designed to
investigate the signatures of X-ray heating in the global 21-cm sig-
nal (Mirocha 2014). As in previous works (e.g. Furlanetto 2006;
Pritchard & Loeb 2010), ARES divides the intergalactic medium
(IGM) into two phases: (i) a fully ionized phase representing H II

bubbles around galaxies, whose volume filling factor QH II affects
the overall normalization of the global 21-cm signal, and (ii) a

1 https://github.com/healpy/healpy
2 http://healpix.sourceforge.net/
3 https://bitbucket.org/mirochaj/ares

MNRAS 455, 3829–3840 (2016)

https://github.com/healpy/healpy
http://healpix.sourceforge.net/
https://bitbucket.org/mirochaj/ares


Parametrizations of the global 21-cm signal 3831

mostly neutral ‘bulk IGM’ phase beyond bubbles, whose spin tem-
perature determines the strength and sign of the global 21-cm
signal.

There are many parameters in ARES that can be varied to generate
different realizations of the 21-cm signal. In this work, we consider
the cosmological parameters and the primordial power spectrum to
be fixed, which in principle specifies the amount of matter which has
been confined in haloes (and the mass function of haloes) as a func-
tion of redshift. The remaining parameters of the model govern how
efficiently this collapsed mass is converted into radiation of different
wavelengths, including the Ly α which causes Wouthuysen-Field
coupling, ionizing radiation (which affects QH II), and X-rays which
heat the IGM efficiently. For example, we may specify a minimum
halo virial temperature below which a halo cannot form stars, the
formation efficiency and spectral energy distribution of different
source populations, the fraction of the radiation which escapes into
the IGM, and so on. Our reference model assumes values for these
parameters which are consistent with low-redshift values, and re-
sults in a history for which the Thomson scattering optical depth to
the CMB is consistent with constraints from Planck (Planck Col-
laboration XIII 2015).

Part of the aim of this series of papers is to determine how well
the values of these parameters really can be expected to represent
the physics generating the signal. That is, if we generate a signal
with ARES, and use it as part of a synthetic data set, to what extent can
we recover what we put in? This includes recovery of (i) the signal
itself, (ii) the properties of the IGM consistent with that recovered
signal, and ultimately, (iii) the properties of galaxies required to
explain the IGM properties.

In its simplest mode of operation – in which the cosmological
radiative transfer is treated approximately – ARES is in principle
fast enough to be used to model the signal when fitting a synthetic
data set, which simultaneously yields a recovered signal, the entire
history of Ly α emission, ionization and heating in the IGM, and
constraints on the values for physical parameters in the code. To
fit more computationally expensive physical models, which have
more free parameters, more advanced physics, or both, may require
a ‘two-stage’ approach, in which a preliminary fit is performed
using a computationally efficient – but perhaps phenomenological
– parametrization of the global 21-cm signal. This first stage yields
a set of measurements to be fit subsequently by a more complex
model. We will now consider two parametrizations of the signal
that are inexpensive alternatives to the full ARES model, and revisit
the two-stage approach in Section 5.

The first parametrization that we will consider is that put for-
ward by Pritchard & Loeb (2010), which we will call the ‘turning
points’ parametrization. This has also been used in subsequent stud-
ies (Harker et al. 2012; Harker 2015) as a fast and convenient method
to describe the major features of a generic global signal. In this pic-
ture, the 21-cm spectrum has a number of maxima and minima,
caused as different effects become dominant in determining δTb.
The positions (in redshift or frequency, and in brightness tempera-
ture) of these turning points are the parameters of the model. The
signal between these turning points is modelled as a cubic spline.
This parametrization is very flexible and can describe a wide range
of plausible 21-cm signals, but the turning point positions require
further interpretation in order to relate them to the physics of the first
sources, via their constraints on the intensity of various radiation
fields and the properties of the IGM at the redshifts of the turning
points (Mirocha et al. 2013).

We will also consider a parametrization which is in some sense
intermediate between the ‘turning points’ model and physical

Figure 1. The ability of different parametrizations to fit the ARES model
is compared. The solid, black line shows the input model used to gen-
erate the synthetic data set, which also assumes foregrounds modelled as
third-order polynomials in log-frequency–log-temperature, an idealized in-
strument model in which the antenna has uniform 85 per cent sensitivity
between 35 and 120 MHz, and an experiment which observes four disjoint
sky regions for 250 h each. The recovered signal using the turning points
parametrization is shown is the solid blue line; if we shift this down so that
the temperature of turning point C agrees with the input signal, we have the
dashed red line. If we use the actual positions of the maxima and minima
of the ARES signal as the parameter values in our turning points model, we
produce the magenta dot–dashed curve. Finally, if the synthetic data set is
fit using the tanh model, the signal we recover is shown as the cyan, dotted
curve.

models like ARES, which we will call the ‘tanh’ parametrization.
In this model, the Ly α background (which determines the strength
of Wouthuysen-Field coupling), the temperature of the IGM, and
the ionized fraction of hydrogen, all evolve according to a tanh
model, i.e. for each quantity A(z) we have

A(z) = Aref

2

{
1 + tanh[(z0 − z)/�z]

}
, (2)

so that they are zero at high redshift,4 switch on over an interval of
width �z around a redshift of z0, and become saturated at a value
of Aref at low redshift. Therefore, each of these three quantities has
three parameters describing its evolution, though e.g. the Aref pa-
rameter for ionization has a natural value of unity and is not free
to vary if the model is to represent a physical history. Because the
tanh model specifies values for IGM quantities, unlike the ‘turn-
ing points’ model which is purely phenomenological, it can also
yield e.g. the Thomson optical depth. The parameters are not linked
directly to source properties, however, and so it is in this sense
that we describe it as being intermediate between the ARES-based
parametrization and the ‘turning points’ parametrization.

Although we will introduce our fitting procedure fully in the next
section, we show the result of attempting to fit the signal generated
by ARES with the turning points and tanh parametrizations now,
in order to point out some features of the parametrizations. This
fitting, shown in Fig. 1, assumes an idealized instrument model,

4 With the exception of the IGM temperature, which is a sum of a ‘tanh’
term and an adiabatic cooling term, TK ∝ (1 + z)2, in order to reproduce
the ‘dark ages’ signal prior to first light.
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Table 1. The turning points parametrization models a signal with five maxima and minima, which are described here, along with their
positions in the history produced by the reference ARES model. When fitting using the turning points parametrization, the positions of
turning points A and E are fixed, while the frequency and amplitude of turning points B, C and D are parameters.

Label ν/MHz z δTb/mK Type Description

A 16.1 87.2 −42 Minimum ‘Dark ages’; collisional coupling becomes ineffective.
B 47.4 29.0 −4.4 Maximum ‘Cosmic dawn’; Ly α coupling becomes effective.
C 71.0 19.0 −125 Minimum Heating becomes important.
D 111.4 11.7 19.2 Maximum Heating saturated; reionization begins.
E 180 6.9 0 Minimum End of reionization; null signal after this point.

simple foregrounds, and 1000 h of observation in four sky regions,
which should be a relatively simple case for the extraction to deal
with, in order to focus on the differences between parametrizations.

We first note that the ARES model plotted in Fig. 1 has the typical
features we expect: a maximum at ∼47 MHz corresponding to the
onset of Ly α coupling, a minimum at ∼71 MHz where the IGM
starts heating, and a broad maximum at ∼111 MHz where ionization
starts to become important. We will refer to these features as turning
points B, C and D, respectively (see Table 1). If we interpolate
between these maxima and minima using a cubic spline (the turning
points parametrization), we produce the magenta dot–dashed line.
Despite enforcing the correct parameter values, the shape of the
curve under this popular parametrization scheme does not closely
match the curve produced by the physical model. This might raise
concerns that a turning points model will not perform well in the
extraction of the signal from synthetic data, and these concerns are
not dispelled by the solid blue line, which is the result of attempting
this fitting.

The overall difference in normalization between the black and
blue lines comes about because a constant offset in the signal can
be almost perfectly absorbed by the foregrounds, and so is very
difficult to determine from the data. This can lead to an unphysical
signal, which we can attempt to solve by imposing stricter priors,
but which is not prevented by the parametrization itself. Even if we
correct this offset in normalization by hand, however, we see that
the shape of the recovered signal does not closely follow the shape
of the input signal. This is shown by the dashed red line, for which
we artificially add an offset to the recovered signal to ensure that
the temperature of the minimum of the absorption trough matches
the input. We can see that even the frequencies of turning points
B and D are poorly recovered: B is at too high a frequency, and D
is too low. A possible reason for this can be seen by comparison
with the magenta dot–dashed line, which goes through the correct
turning points. We see that near the minimum of the signal, the offset
recovered curve captures the shape of the input signal much better.
It seems, then, that by matching the shape of the signal between
the turning points, we recover worse values for the positions of the
turning points themselves.

Finally, we examine a fit using the tanh model, shown with the
dotted cyan line. This captures the overall shape of the signal much
better than the turning points model, though there seems to be an
offset at high frequency which we examine later. In fact, if we look
at the position of the turning points recovered from the tanh model,
they match those of the input signal better than the turning points
model even though they are not explicit parameters of the tanh
model. Moreover, since the tanh functions in this parametrization
describe properties of the IGM, which are then translated into a δTb,
we can guarantee that the signal is physically plausible much more
readily than for the turning points parametrization. The tanh model

is, however, much faster to evaluate than a full ARES run, and so it is
a promising parametrization for which to test our fitting in the rest
of this paper.

4 D E S C R I P T I O N O F T H E R E C OV E RY
PROCESS

Given a synthetic data set, i.e. a small number of independent,
noisy spectra (from pointing towards different areas of the sky)
including a 21-cm signal, foregrounds, instrumental response and
noise, generated according to the procedure outlined in Section 2, we
wish to fit some parameters describing the different contributions
to the data. In this paper, we wish to concentrate our attention
on the difference between parametrizations of the 21-cm signal,
and so we fix the instrument model to be the same as the one
used to generate the data set, and fit the parameters of a signal
model (not necessarily the same one used to generate the data)
and a straightforward foreground model. The global 21-cm signal
is uniform over the sky at the angular resolutions and noise levels
we consider here (Bittner & Loeb 2011), so the parameters of the
signal are the same in each sky area. The foreground parameters are
allowed to differ, however.

We have updated our fitting routines from the ones used by Harker
et al. (2012) for an earlier version of the DARE pipeline. Fitting mod-
erately large numbers of sky regions, more complex foregrounds,
more computationally expensive signal models and potentially pa-
rameters of an instrument model, requires us to be able to explore a
complicated parameter space with perhaps a few dozen dimensions.
For this reason, we now use the EMCEE package (Foreman-Mackey
et al. 2013), which implements the affine-invariant Markov Chain
Monte Carlo sampler of Goodman & Weare (2010). This yields
samples from the posterior probability distribution of the param-
eters of interest, given the data. In computing the likelihood, we
assume all the frequency channels in all sky regions are indepen-
dent, i.e. the probability density for obtaining the value T i

meas(νj ),
where i indexes the sky region, for a vector of parameters θ , is

pij = 1√
2πσ 2

i (νj |θ )
e−[T i

meas(νj )−T i
mod(νj |θ)]2/2σ 2

i (νj |θ ) , (3)

where σi(νj |θ ) is the rms noise in the channel, computed from
T i

mod(νj |θ ), the bandwidth and the integration time using the ra-
diometer equation, and the likelihood is just the product over all the
channels,

L(T meas|θ ) =
Nsky∏
i=1

nfreq∏
j=1

pij . (4)

More generally, we could concatenate the individual spectra into
a single ‘data vector’, in which case our independence assumption
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Figure 2. Turning points inferred from a direct fit of the ‘turning points’ parametrization to the reference ARES model, for an idealized antenna that has
85 per cent sensitivity across the whole band between 35 and 120 MHz, and for a total integration time of 1000 h spread across four sky regions. That is, the
input signal is the solid, black curve of Fig. 1, while the fitted signal is the blue, solid curve of Fig. 1. This plot shows the marginalized 1D and 2D posterior
probability distributions of the signal parameters, where νi and Ti are the frequency and differential brightness temperature, respectively, of turning point i,
where i is B, C or D. 0.5σ , 1σ , 1.5σ and 2σ contours are shown with the solid lines and shading in each 2D panel, while individual samples of the posterior
outside the 2σ contour are shown with individual dots. In the 1D histograms down the diagonal of the plot, the title above the panel gives the median value of
the parameter, with errors calculated using the 16th and 84th percentiles of the distribution, while the vertical dashed lines in each panel show the 16th, 50th
and 84th percentiles visually. For this fit, in no case does the ‘true’ position of the turning point lie within the scale of the plot, even though the formal statistical
errors on the positions of the turning points are relatively small. The distributions of TB and TD run up against the edge of the prior.

implies a diagonal data covariance matrix, but this machinery is not
necessary for the current work. In practice, we work with the log-
likelihood, so the product in equation (4) is computed as a sum. We
adopt broad, Gaussian priors for the foreground parameters, which
have little impact since the data generally constrain them quite

well. For the signal parameters, we generally adopt uniform priors;
occasionally, these do come into play, for example in preventing
the 21-cm signal parametrized by its turning points from becoming
unphysical, but it is generally clear when this is the case, and we
comment on it when relevant.

MNRAS 455, 3829–3840 (2016)
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Figure 3. Parameters of the tanh model inferred from a fit to the reference ARES model, for the same experimental setup as Figs 1 and 2. In order from left to
right, the parameters are the normalization (Aref, see equation 2) of the Ly α flux tanh function in units of 10−21 erg s−1 cm−2 Hz−1 sr−1, the redshift interval
(�z) and the central redshift (z0) over which the Ly α background turns on, �z and z0 for the X-ray heating, and �z and z0 for the ionization step. The
ionization step is fixed to a height of unity, since it represents a fraction, and the temperature step height is fixed to 1000 K, since in practice the signal becomes
saturated at low redshift, so the precise height of the step is not important.

4.1 Two-stage fitting

As alluded to in the previous section, we will also consider a scenario
in which foreground removal has yielded the parameters of some
21-cm signal model, with errors, and we want to perform a second
stage of inference about a different model. This situation might arise
when the full parameter space has high dimension (for example, we
wish to fit foregrounds in a large number of sky regions, perhaps

including contributions from the Sun, Moon, etc., along with instru-
mental parameters) meaning that we can only perform the signal
extraction using a signal model which can be generated rapidly. For
example, we might infer the positions of the turning points, under
that parametrization.

We might then wish to take those turning point constraints, and
use them to infer something about the parameters of a model
which is slower to evaluate, but has more physically meaningful

MNRAS 455, 3829–3840 (2016)
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Figure 4. We show how the constraints on the δTb history implied by Fig. 3 translate into constraints on the turning points. In each panel, the dotted lines
show the input parameter value. The dashed vertical line in panel (e) shows the upper end of the frequency range, while the nearly horizontal line shows the
path the signal would follow in a hot, completely neutral Universe for which the emission signal saturates. The dark blue and green contours show 1σ and 2σ

credible regions.

parameters, for example the full ARES signal model. We wish to
test how much of the physical information in the data is retained
in this two-step approach, since it may determine the requirements
we place on our signal extraction pipeline. We also perform this
second-stage fitting using EMCEE, but rather than the likelihood be-
ing computed as a sum over all the frequency channels in all the
sky areas, it is computed assuming Gaussian errors on the param-
eters of the intermediate parametrization (either independent er-
rors, or using the covariance matrix coming from the first-stage
fitting).

5 R E C OV E R I N G PA R A M E T E R S FRO M
O B S E RVATI O N S

We start by comparing the turning points recovered by a direct
fit of the ‘turning points’ parametrization to an ARES model with
the turning points recovered by fitting the tanh parametrization
(where in the latter case, the turning points are the extrema of the
reconstructed signal).

The direct fit of the turning points model, for the same case
as for Fig. 1, is shown in Fig. 2, which is a ‘corner plot’ made

using Foreman-Mackey’s TRIANGLE_PLOT package.5 As noted in the
discussion of Fig. 1, the turning point constraints are biased, and all
the ‘true’ values of the turning point parameters lie outside the axis
ranges of the panels in Fig. 2. The statistical errors are therefore
misleading, even though the instrument model is perfect and fixed,
and the foreground model is able (by construction) to perfectly
model the input foregrounds. None the less, some of the correlations
we can see in the 2D posteriors, such as the positive correlation
between the frequency and differential brightness temperature of
turning point C, persist in other cases. For example, we see this
correlation when the input model (as well as the fit mode) uses
the ‘turning points’ parametrization, or when the turning points are
inferred from a tanh fit to the data.

Similarly, Fig. 3 shows the parameters of the tanh fit correspond-
ing to the cyan dotted line in Fig. 1. Although there are some
strong degeneracies, for example between the normalization and
central redshift of the Ly α history, and between the central red-
shift and width of the temperature step, which may suggest that a
lower dimensional parametrization could work, the constraints seem

5 https://github.com/dfm/triangle.py
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Figure 5. A comparison of the 68 per cent credible regions for constraints on the positions of the turning points for three different data sets: the same as that
used in Fig. 4 (black); a data set where the upper limit of the frequency range is 100 MHz instead of 120 MHz (blue); and a data set where the foregrounds are
fourth-order polynomials in log ν–log T rather than third order (green).

plausible and physical. Constraints on the reionization mid-point
and duration are comparable to numbers quoted in the literature, but
should be interpreted with caution as the bandpass used in the fit is
truncated at 120 MHz, i.e. z ≈ 10.8. As a result, these constraints
would likely change if one imposed z � 10 prior information from
the late stages of reionization. However, such constraints are still
meaningful: we will focus on how these parameters are related to the
volume filling factor of H II regions, QH II, and the volume-averaged
ionization rate, �H I, momentarily.

We see how these translate into constraints on the turning
points in Fig. 4. The statistical errors are similar to those for
the direct spline fit through the turning points (Fig. 2), but the
best-fitting values are clearly much closer to the true values, i.e.
the bias is substantially reduced. Some biases remain, however,
and are a consistent feature in all of our calculations, regard-
less of the integration time or number of sky regions. We have
checked that despite the small residual bias, the fitting correctly
captures the variation in turning point position with changes in
ARES parameters. For example, as the efficiency of X-ray produc-
tion changes, the position of turning point C (in frequency and
temperature) also changes, and the fitted values accurately reflect
this.

We should expect biases in the turning point constraints to prop-
agate to constraints on the IGM properties, so we will next in-
vestigate how to mitigate these biases. First, we test whether the
constraints might be affected by the frequency range used for the
fitting and the complexity of the foreground model. We can see
from Fig. 1 that there is a mismatch between the input model
and the recovered tanh-fit at the highest frequencies, where it
seems to lie below the input signal. This is not unique to the
specific realization fitted in Fig. 1, and may simply be due to a
degeneracy with the foreground, which is more difficult to over-
come at high frequencies where the signal is smoothest. Biases at
high frequencies, depending on the parametrization, could prop-
agate to lower frequencies. A more complex foreground model
may help by absorbing the smooth divergence between the tanh
model and the input curve at high frequencies. Usually, this sort
of degeneracy is a disadvantage since it weakens the constraints
on the signal, but we aim to test whether, by allowing a wider
range of histories at low redshift, a more complex model might
avoid biases at higher redshift, perhaps at the expense of increased
errors.

The turning point constraints for the same model as in the earlier
figures, for a data set truncated at 100 MHz, and for a data set using
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Figure 6. The constraints on the IGM parameters for which the constraining
power comes mainly from turning point C. These parameters are the kinetic
temperature of the gas (colder than the CMB at this point), the heating rate
density (erg s−1 per unit comoving Mpc3), and the Ly α flux (in units of
J21 = 10−21 erg s−1 cm−2 Hz−1 sr−1). The data set assumes 1000 h of data
split between four sky regions, though the results are qualitatively similar
for fewer sky regions and for shorter integrations. The black lines show
constraints (1D posterior distributions and 1σ contours) coming directly
from the tanh fit to the data set, while the blue lines show the results obtained
with a more complex foreground model. The green lines assume that only
the positions of the turning points and the covariances between the turning
points are known, whereas the red lines assume that only the turning point
positions are known (nothing about the shape of the signal in between) and
that the errors on the turning points are independent and Gaussian, with the
positions and the size of the errors coming from the tanh fit. Dotted vertical
and horizontal lines show the true values.

the full frequency range but a fourth order rather than a third-order
polynomial model for the foregrounds, are shown in Fig. 5. As one
would expect, truncating the frequency range significantly weakens
the constraints on turning point D. It does, however, reduce the
bias on the frequency of turning point C, for which the constraints
were only marginally consistent with the true value in the standard
case. Therefore, it does seem that discarding frequencies where the
parametrization is unable to capture the shape of the signal helps
with recovery. Perhaps surprisingly, increasing the complexity of the
foreground model has a similar effect, increasing the errors on the
high-frequency turning point but reducing the bias on turning point
C. The extra foreground parameters act as extra nuisance parameters
which absorb the difference between the tanh model and the data,
and which are marginalized over to produce an unbiased constraint.

A similar effect can be seen at work if we examine one- and
two-stage fits for the IGM parameters. By a one-stage fit, we mean
that the properties of the IGM are taken directly from the tanh
parametrization. By a two-stage fit, as discussed in Section 4.1,
we mean that, first, a tanh fit is used to infer the positions of the
turning points and then, secondly, the constraints on the turning
points are used to infer IGM parameters. We look at two flavours of
the second-stage fit in Figs 6 and 7. In the first, we simply take the
errors on the frequency and temperature of each turning point to be
independent and Gaussian. In the second, we still assume the errors

are Gaussian, but use the covariance matrix for the turning point
parameters obtained from the posterior samples of the tanh fit.

If we only use the turning points to constrain the IGM param-
eters, and do not make use of any other shape information in the
signal, this naturally increases the errors, as can be seen in the larger
contours and broader 1D distributions for the two-stage fits. This is
especially so if we disregard the correlation structure and treat each
turning point parameter independently (red lines). The two-stage fits
do, however, reduce the bias on the inference of the IGM properties.
The black contours are inconsistent with the true values, while the
red and green contours from the two-stage fits enclose the true value.
Our interpretation of this is that although we have discarded shape
information, retaining only the turning point positions, this shape
information was unreliable, and biased our constraints. The turning
points encode robust information about the signal, even when they
are inferred from a parametrization (the tanh model) which does
not explicitly include their positions as parameters. This highlights
the importance either of finding a parametrization which is flexible
enough to be able to capture the true shape of the signal, or find-
ing robust quantities which yield reliable information even if the
parametrization is imperfect. Of course, for a real experiment we
do not know the shape of the signal in advance, though we may
be able to choose between different parametrizations using e.g. the
Bayesian evidence. In Fig. 8, we distil the results of a calculation
suite in which the total integration time, tint, and the number of
independent sky regions, Nsky, is varied, showing constraints on the
turning points as a function of tint and Nsky. Increasing the inte-
gration time by a factor of 10 has a much more substantial effect
than increasing the number of sky regions, though subtle ∼1σ -level
biases, particularly in the frequency and brightness temperature of
turning point D, are persistent even with 1000 h integration. Increas-
ing Nsky from 1 to 2 has a greater impact than any further increases,
though this conclusion may change if we must also fit parameters
of the instrument, since we will then have constraints from a greater
variety of signals being passed through the instrumental response.
The results for tint = 1000 h and Nsky = 8 are perhaps surprisingly
poor, but this reflects the fact that by using the entire sky, we end
up including the parts with the most intense foregrounds, in the di-
rection of the Galactic Centre. Since this paper’s focus is on signal
parametrizations, an investigation of the tradeoff between the num-
ber of independent sky regions and the intensity of the foregrounds
(and how this affects constraints on the instrumental response) is
beyond its scope.

6 D I SCUSSI ON

While these calculations can provide some indication of the most
useful or flexible parametrizations to use for signal extraction for
observational data, it would be more useful to have an indication
of which is the best model to use from the data themselves. This
may be supplied by a computation of the Bayesian evidence, but
although EMCEE provides in principle for the computation of the
appropriate marginal likelihood using its parallel tempering mode,
we have found that to be impractical. We have used nested sampling
(Skilling 2004) to perform model selection for an idealized and
simplified version of the problem we study here (Harker 2015), but
we found that MULTINEST (Feroz, Hobson & Bridges 2009) did not
scale well enough to apply to the problems in the current paper,
and an alternative such as POLYCHORD (Handley, Hobson & Lasenby
2015) may be required.

In principle, the best parametrization might also depend on the
properties of the instrument, since instrumental parameters might
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Figure 7. The constraints on the IGM parameters for which the constraining power comes mainly from turning point D. These parameters are the kinetic
temperature of the gas (hotter than the CMB at this point), the heating rate density, the volume filling factor of H II regions, QH I, and the volume-averaged
ionization rate, �H I (in units of 10−17 s−1). The colours have the same meaning as those shown in Fig. 6.

be more degenerate with some signal parametrizations than with
others. If the instrumental response is known, but is different from
the response we have assumed here (a constant 85 per cent efficiency
across the band), our conclusions are unaffected, though the errors
on the parameters can change owing to the change in sensitivity.
We have checked this using a modelled instrumental response for
DARE. If we must fit instrumental parameters, then the conclusions
may depend in detail on the properties of the instrument, and so
are beyond the scope of this paper, which attempts a more general
discussion.

7 C O N C L U S I O N S

We have described a ‘tanh’ model for the global 21-cm signal
between the end of the dark ages and the start of the epoch of
reionization, which employs simple parametric forms for the Ly α

background, IGM temperature and reionization histories, and which
matches the shape of physical models much better than the ‘turning
points’ model used in previous work. The tanh model also helps
pin down the overall normalization of the signal, and thus the po-

sition of its turning points, despite the fact that the turning points
are not explicit parameters of the model. This is largely because
the tanh model has stronger theoretical priors, e.g. the ‘dark ages’
feature is confined to a narrow ‘track’ at ν � 50 MHz, and the signal
cannot become ‘supersaturated’ at late times (low redshifts). More-
over, by describing IGM properties explicitly, it opens the door to
including other constraints on the reionization history (e.g. from
the CMB) in our likelihood function. It does all this while being
several orders of magnitude faster to compute than a full physi-
cal model of the 21-cm signal, allowing us to explore the large
parameter spaces which are required if we are to simultaneously
fit parameters of the signal, foregrounds and instrument. We can
none the less take the parametric fits and use them to constrain
simple galaxy formation models, as shown by Mirocha, Harker &
Burns (2015).

We have found that integration time plays a larger role than
the number of independent sky areas in the quality of signal re-
covery, though subtle biases persist in turning points constraints,
particularly at the highest frequencies (ν � 100 MHz). This can be
remediated by a more complex foreground model or by truncating
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Figure 8. Constraints on the turning point positions as a function of the number of sky regions and integration time. Green, black and blue points correspond
to constraints on turning points B, C and D, respectively, and are slightly offset in the x-direction for clarity. The top row shows errors in the frequency of the
turning points, relative to their input values, while the bottom row shows errors in the amplitude of each turning point. Note that we do not show the errors on
the temperature of turning point B, since these are too large to strongly constrain models, and would stretch the scale of the figure. All error-bars shown are
68 per cent credible intervals. Note that the y range for the panels on the right has been zoomed in.

the band at 100 MHz, though the latter renders all constraints on
the IGM at the lowest redshifts meaningless.

Even when the turning point constraints are unbiased relative
to the input values, inferences of the properties of the IGM at the
turning points can be biased. This is due to a subtle mismatch in
shape between the tanh model and the ARES physical model, which
can be seen upon evaluation of the curvature at the turning points.
In ‘two-stage fits’, one can mitigate such effects by treating the
errors on the turning points as independent Gaussians: while this
is admittedly a more conservative estimate of the errors, it is a
treatment which removes most knowledge of the detailed shape of
the signal, keeping only the information which is more robust.

Finally, a direct ‘single-stage fit’ using the parameters of the ARES

model might well be ideal, and would provide a useful point of com-
parison to our two-stage fits. For example, it would be interesting
to see if biases in IGM properties would persist even if the signal
were fit with the exact model used to generate it. We did not find
this to be computationally feasible for this work, which highlights
the need for future work to consider other samplers to explore our
parameter space, and to tackle model selection as well as parameter
estimation.
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