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ABSTRACT
Evolution in the X-ray luminosity–star formation rate (LX–SFR) relation could provide the first
evidence of a top-heavy stellar initial mass function in the early Universe, as the abundance of
high-mass stars and binary systems are both expected to increase with decreasing metallicity.
The sky-averaged (global) 21-cm signal has the potential to test this prediction via constraints
on the thermal history of the intergalactic medium, since X-rays can most easily escape
galaxies and heat gas on large scales. A significant complication in the interpretation of
upcoming 21-cm measurements is the unknown spectrum of accreting black holes (BHs) at
high-z, which depends on the mass of accreting objects and poorly constrained processes
such as how accretion disc photons are processed by the disc atmosphere and host galaxy
interstellar medium. Using a novel approach to solving the cosmological radiative transfer
equation (RTE), we show that reasonable changes in the characteristic BH mass affects the
amplitude of the 21-cm signal’s minimum at the ∼10–20 mK level – comparable to errors
induced by commonly used approximations to the RTE – while modifications to the intrinsic
disc spectrum due to Compton scattering (bound-free absorption) can shift the position of
the minimum of the global signal by �z ≈ 0.5 (�z ≈ 2), and modify its amplitude by
up to ≈10 mK (≈50 mK) for a given accretion history. Such deviations are larger than the
uncertainties expected of current global 21-cm signal extraction algorithms, and could easily
be confused with evolution in the LX–SFR relation.

Key words: methods: numerical – dark ages, reionization, first stars – diffuse radiation –
X-rays: binaries – X-rays: diffuse background.

1 IN T RO D U C T I O N

The Universe’s transition from a cold and mostly neutral state after
cosmological recombination, to a hot, ionized plasma, ∼1 billion
years later, encodes information about the first generations of stars,
galaxies, and compact objects (Barkana & Loeb 2001; Bromm et al.
2009). However, two major astrophysical milestones are likely to
occur well before this Epoch of Reionization (EoR) began in earnest,
which are both valuable probes of the high-redshift Universe: (1)
decoupling of the excitation temperature of ambient intergalactic
hydrogen gas from the cosmic microwave background (CMB) tem-
perature by a soft ultraviolet background (Wouthuysen 1952; Field
1958; Madau, Meiksin & Rees 1997; Barkana & Loeb 2005), and
(2) X-ray heating of the intergalactic medium (IGM), eventually to
temperatures above the CMB temperature (Venkatesan et al. 2001;
Chen & Miralda-Escudé 2004; Madau et al. 2004; Ricotti & Ostriker
2004; Ciardi, Salvaterra & Di Matteo 2010; Mcquinn 2012). These
events are expected to be visible in absorption against the CMB at
low radio frequencies, ν = ν0(1 + z), where ν0 = 1420 MHz is
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the rest frequency of the ground-state hyperfine 21-cm transition of
neutral hydrogen, and z is the redshift (for a review, see Furlanetto,
Oh & Briggs 2006).

Studies of the pre-reionization epoch via the redshifted 21-cm
line in absorption have the potential to provide the first contempo-
raneous constraints on the properties of the first stars and black holes
(BHs), whose formation channels may be fundamentally different
than those of their counterparts in the local Universe (e.g. Bromm,
Coppi & Larson 1999; Abel, Bryan & Norman 2002; Begelman,
Volonteri & Rees 2006). Their existence could dramatically alter
the conditions for subsequent star and BH formation in their host
haloes, and perhaps globally, through strong photodissociating and
photoionizing radiation (e.g. Haiman, Abel & Rees 2000; Kuhlen
& Madau 2005; Mesinger, Bryan & Haiman 2009; Tanaka, Perna
& Haiman 2012; Wolcott-Green & Haiman 2012; Jeon et al. 2014).

In this work, we focus on the minimum of the global 21-cm sig-
nal and how its position could be used to probe the properties of
accreting BHs in the early Universe. The 21-cm minimum is well
known as an indicator of heating (e.g. Furlanetto 2006; Pritchard
& Furlanetto 2007; Mirabel et al. 2011), and from its position one
can obtain model-independent limits on the instantaneous heating
rate density and cumulative heating in the IGM over time (Mirocha,
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Harker & Burns 2013). The 21-cm maximum is also a probe of the
IGM thermal history (e.g. Ripamonti, Mapelli & Zaroubi 2008),
though because it likely overlaps with the early stages of reioniza-
tion, one must obtain an independent measurement on the ionization
history in order to constrain the IGM temperature and heating rate
density (Mirocha et al. 2013). In either case, extracting the proper-
ties of the heat sources themselves from the 21-cm signal is fraught
with uncertainty since the number density of X-ray sources and
their individual luminosities cannot be constrained independently
by volume-averaged measures like the global 21-cm signal.

Despite such degeneracies among model parameters, accurate
enough measurements could still rule out vast expanses of a cur-
rently wide-open parameter space. What remains could be visu-
alized as a two-dimensional posterior probability distribution that
characterizes the likelihood that any given pair of model parameters
is correct, having marginalized over uncertainties in all additional
parameters. Two likely axes in such analyses include (1) the charac-
teristic mass (or virial temperature) of star-forming haloes and (2)
the X-ray luminosity per unit star formation. However, a third, and
often ignored axis that will manifest itself in such posterior probabil-
ity spaces is the spectral energy distribution (SED) of X-ray sources.
The reason for this expectation is simple: soft X-ray sources will
heat the IGM more efficiently than hard X-ray sources (at fixed total
X-ray luminosity) due to the strong frequency dependence of the
bound-free absorption cross-section (σ ∝ ν−3 approximately).

High-mass X-ray binaries (HMXBs) are often assumed to be the
dominant source of X-rays in models of high-z galaxies. This choice
is motivated by X-ray observations of nearby star-forming galaxies
(see review by Fabbiano 2006), as well as theoretical models of
stellar evolution, which predict the formation of more massive stel-
lar remnants and more binaries in metal-poor environments (e.g.
Belczynski et al. 2008; Linden et al. 2010; Mapelli et al. 2010).
Indeed, observations of star-forming galaxies are consistent with
a boost in HMXB populations (per unit SFR) in galaxies out to
z ∼ 4−6 (Basu-Zych et al. 2013; Kaaret 2014), as is the unresolved
fraction of the cosmic X-ray background (Dijkstra et al. 2012).
Though direct constraints on the z � 4 population are weak, local
analogues of high-z galaxies exhibit a factor of ∼10 enhancement
in the normalization of the X-ray luminosity function in metal-poor
galaxies relative to galaxies with ∼ solar metallicity (e.g. Kaaret,
Schmitt & Gorski 2011; Prestwich et al. 2013; Brorby, Kaaret &
Prestwich 2014).

Even if HMXBs are the dominant sources of X-rays in the early
Universe, there are various remaining uncertainties that may affect
the global 21-cm signal and inferences drawn from the position of its
minimum. Our focus is on modifications of the 21-cm signal brought
about by variation in the characteristic mass of accreting objects and
the reprocessing of their intrinsic emission spectrum by intervening
material. Theoretical investigations of this sort can provide vital
information to upcoming 21-cm experiments that seek to detect the
absorption trough, such as the Dark Ages Radio Explorer (DARE;
Burns et al. 2012), the Large Aperature Experiment to Detect the
Dark Ages (LEDA; Greenhill & Bernardi 2012), and the SCI-HI
experiment (Voytek et al. 2014). For instance, how accurately must
the 21-cm absorption trough be measured in order to distinguish
models for the first X-ray sources?

The challenge for such studies is solving the cosmological radia-
tive transfer equation (RTE) in a way that (1) accurately couples the
radiation field from sources to the thermal and ionization state of
the IGM, and (2) does so quickly enough that a large volume of pa-
rameter space may be surveyed. Recent studies have taken the first
steps towards this goal by identifying SEDs likely to be representa-

tive of high-z sources (e.g. Power et al. 2013). Some have applied
semi-numeric schemes to predict how these SEDs contribute to the
ionizing background (Fragos et al. 2013; Power et al. 2013), while
others have studied the influence of realistic X-ray SEDs on the sky-
averaged 21-cm signal and the 21-cm power spectrum (Ripamonti
et al. 2008; Fialkov, Barkana & Visbal 2014). Our focus is comple-
mentary: rather than calculating the ionizing background strength
or 21-cm signal that arise using ‘best guess’ inputs for the SED of
X-ray sources, we quantify how reasonable deviations from best
guess SEDs can complicate inferences drawn from the signal.

The outline of this paper is as follows. In Section 2, we intro-
duce our framework for cosmological radiative transfer and the
global 21-cm signal. In Section 3, we describe our implementation
of the Haardt & Madau (1996) method for discretizing the RTE
and test its capabilities. In Section 4, we use this scheme to in-
vestigate the impact of SED variations on the global 21-cm signal.
Discussion and conclusions are in Sections 5 and 6, respectively.
We adopt WMAP7+BAO+SNIa cosmological parameters (��, 0 =
0.728, �b, 0 = 0.044, H0 = 70.2 km s−1 Mpc−1, σ 8 = 0.807, n =
0.96) throughout (Komatsu et al. 2011).

2 T H E O R E T I C A L F R A M E WO R K

As in Furlanetto (2006), we divide the IGM into two components:
(1) the ‘bulk IGM’, which is mostly neutral and thus capable of
producing a 21-cm signature, and (2) H II regions, which are fully
ionized and thus dark at redshifted 21-cm wavelengths. This ap-
proach is expected to break down in the late stages of reionization
when the distinction between H II regions and the ‘neutral’ IGM
becomes less clear. However, our focus in this paper is on the
pre-reionization era so we expect this formalism to be reasonably
accurate.

There are three key steps one must take in order to generate
a synthetic global 21-cm signal within this framework. Starting
from a model for the volume-averaged emissivity of astrophysical
sources, which we denote as εν(z) or ε̂ν(z), further subdivided into
a bolometric luminosity density (as a function of redshift) and SED
(could also evolve with redshift in general), one must

(i) determine the mean radiation background pervading the space
between galaxies (the so-called metagalactic radiation background),
including the effects of geometrical dilution, redshifting, and bound-
free absorption by neutral gas in the IGM. We denote this angle-
averaged background radiation intensity as Jν or Ĵν .

(ii) once the background intensity is in hand, compute the ion-
ization rate density, 	H I, and heating rate density, εX, in the bulk
IGM.

(iii) given the ionization and heating rate densities, we can then
solve for the rate of change in the ionized fraction, xe, and temper-
ature, TK, of the bulk IGM gas. The rate of change in the volume
filling fraction of H II regions, xi, is related more simply to the rate
of baryonic collapse in haloes above a fixed virial temperature, Tmin,
at the redshift of interest.

Once the thermal and ionization state of the IGM and the back-
ground intensity at the Ly α resonance are known, a 21-cm signal
can be computed. In this section, we will go through each of these
steps in turn.
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Pre-reionization X-ray sources 1213

2.1 Astrophysical models

We assume throughout that the volume-averaged emissivity is pro-
portional to the rate of collapse, ε̂ν(z) ∝ dfcoll/dt , where

fcoll = ρ−1
m (z)

∫ ∞

mmin

mn(m)dm (1)

is the fraction of gas in collapsed haloes more massive than mmin .
Here, ρm(z) is the mean comoving mass density of the Universe and
n(m)dm is the comoving number density of haloes with masses in
the range (m, m + dm). We compute n(m) using the HMF-CALC code
(Murray, Power & Robotham 2013), which depends on the Code for
Anisotropies in the Microwave Background (CAMB; Lewis, Challinor
& Lasenby 2000). We choose a fixed minimum virial temperature
Tmin ≥ 104 K corresponding to the atomic cooling threshold (equa-
tion 26; Barkana & Loeb 2001), which imposes redshift evolution
in mmin .

Our model for the emissivity is then

εν(z) = ρ̄0
bcifi

dfcoll

dt
Iν, (2)

where ρ̄0
b is the mean baryon density today, ci is a physically (or

observationally) motivated normalization factor that converts bary-
onic collapse into energy output in some emission band i (e.g. Lyα,
soft UV, X-ray), while fi is a free parameter introduced to signify
uncertainty in how ci evolves with redshift. The parameter Iν repre-
sents the SED of astrophysical sources, and is normalized such that∫

Iνdν = 1. We postpone a more detailed discussion of our choices
for ci, Iν , and what we mean by ‘astrophysical sources’ to Section
4.

2.2 Cosmological radiative transfer

Given the volume-averaged emissivity, εν , the next step in comput-
ing the global 21-cm signal is to obtain the angle-averaged back-
ground intensity, Jν . To do so, one must solve the cosmological
RTE,(

∂

∂t
− νH (z)

∂

∂ν

)
Jν(z) + 3H (z)Jν(z) = −cανJν(z)

+ c

4π
εν(z)(1 + z)3, (3)

where H is the Hubble parameter, which we take to be H (z) ≈
H0�m,0(1 + z)3/2 as is appropriate in the high-z matter-dominated
Universe, and c is the speed of light. This equation treats the IGM
as an isotropic source and sink of radiation, parametrized by the co-
moving volume emissivity, εν (here in units of erg s−1 Hz−1 cMpc−3,
where ‘cMpc’ is short for ‘comoving Mpc’), and the absorption co-
efficient, αν , which is related to the optical depth via dτν = ανds,
where ds is a path length. The solution is cleanly expressed
if we write the flux and emissivity in units of photon number
(which we denote with ‘hats’, i.e. [Ĵν] = s−1 cm−2 Hz−1 sr−1 and
[ε̂ν] = s−1 Hz−1 cMpc−3),

Ĵν(z) = c

4π
(1 + z)2

∫ zf

z

ε̂ν′ (z′)
H (z′)

e−τν dz′. (4)

The ‘first light redshift’ when astrophysical sources first turn on is
denoted by zf, while the emission frequency, ν ′, of a photon emitted
at redshift z′ and observed at frequency ν and redshift z is

ν ′ = ν

(
1 + z′

1 + z

)
. (5)

The optical depth is a sum over absorbing species,

τ ν(z, z′) =
∑

j

∫ z′

z

nj (z′′)σj,ν′′
dl

dz′′ dz′′, (6)

where dl/dz = c/H (z)/(1 + z) is the proper cosmological line ele-
ment, and σ j, ν is the bound-free absorption cross-section of species
j = H I, He I, He II with number density nj. We use the fits of Verner
& Ferland (1996) to compute σ j, ν unless stated otherwise, assume
the ionized fraction of hydrogen and singly ionized helium are equal
(i.e. xH II = xHe II), and neglect He II entirely (i.e. xHe III = 0). We will
revisit this helium approximation in Section 5.

The Lyα background intensity, which determines the strength
of Wouthuysen–Field coupling (Wouthuysen 1952; Field 1958), is
computed analogously via

Ĵα(z) = c

4π
(1 + z)2

nmax∑
n=2

f (n)
rec

∫ z
(n)
max

z

ε̂ν′ (z′)
H (z′)

dz′, (7)

where f (n)
rec is the ‘recycling fraction’, that is, the fraction of photons

that redshift into a Lyn resonance that ultimately cascade through
the Lyα resonance (Pritchard & Furlanetto 2006). We truncate the
sum over Lyn levels at nmax = 23 as in Barkana & Loeb (2005),
and neglect absorption by intergalactic H2. The upper bound of the
definite integral,

1 + z(n)
max = (1 + z)

[
1 − (n + 1)−2

]
1 − n−2

, (8)

is set by the horizon of Lyn photons – a photon redshifting through
the Lyn resonance at z could only have been emitted at z′ < z(n)

max,
since emission at slightly higher redshift would mean the photon
redshifted through the Ly(n + 1) resonance.

Our code can be used to calculate the full ‘sawtooth’ modu-
lation of the soft UV background (Haiman, Rees & Loeb 1997)
though we ignore such effects in this work given that our focus is
on X-ray heating. Preservation of the background spectrum in the
Lyman–Werner band and at even lower photon energies is crucial
for studies of feedback, but because we have made no attempt to
model H2 photodissociation or H− photodetachment, we neglect
a detailed treatment of radiative transfer at energies below hν =
13.6 eV and instead assume a flat UV spectrum between Lyα and
the Lyman-limit and ‘instantaneous’ emission only, such that the
Lyα background at any redshift is proportional to the Lyα emis-
sivity, ε̂α , at that redshift. Similarly, the growth of H II regions is
governed by the instantaneous ionizing photon luminosity, though
more general solutions would self-consistently include a soft UV
background that arises during the EoR due to rest-frame X-ray
emission from much higher redshifts.

2.3 Ionization and heating rates

With the background radiation intensity, Jν , in hand, one can com-
pute the ionization and heating this background causes in the bulk
IGM. To calculate the ionization rate density, we integrate the back-
ground intensity over frequency,

	H I(z) = 4πnH(z)
∫ νmax

νmin

Ĵνσν,H Idν, (9)

where nH = n̄0
H(1 + z)3 and n̄0

H is the number density of hydro-
gen atoms today. The ionization rate in the bulk IGM due to fast
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1214 J. Mirocha

secondary electrons (e.g. Shull & van Steenberg 1985; Furlanetto
& Stoever 2010) is computed similarly,

γH I(z) = 4π
∑

j

nj

∫ νmax

νmin

fionĴνσν,j (hν − hνj )
dν

hν
, (10)

and analogously, the heating rate density,

εX(z) = 4π
∑

j

nj

∫ νmax

νmin

fheatĴνσν,j (hν − hνj )dν, (11)

where hν j is the ionization threshold energy for species j, with num-
ber density nj, and νmin and νmax are the minimum and maximum
frequency at which sources emit, respectively. fion and fheat are the
fractions of photoelectron energy deposited as further hydrogen ion-
ization and heat, respectively, which we compute using the tables
of Furlanetto & Stoever (2010) unless otherwise stated.

2.4 Global 21-cm signal

Finally, given the ionization and heating rates, 	H I, γH I, and εX, we
evolve the ionized fraction in the bulk IGM via

dxe

dt
= (	H I + γH I)(1 − xe) − αBnexe (12)

and the volume filling factor of H II regions, xi, via

dxi

dt
= f∗fescNionn̄

0
b

dfcoll

dt
(1 − xe) − αAC(z)nexi (13)

where n̄0
b is the baryon number density today, αA and αB are the

case-A and case-B recombination coefficients, respectively, ne =
nH II + nHe II is the proper number density of electrons, f∗ is the
star-formation efficiency, fesc the fraction of ionizing photons that
escape their host galaxies, Nion the number of ionizing photons
emitted per baryon in star formation, and C(z) is the clumping
factor. We average the ionization state of the bulk IGM and the
volume filling factor of H II regions to determine the mean ionized
fraction, i.e. xi = xi + (1 − xi)xe, which dictates the IGM optical
depth (equation 6). We take C(z) = constant = 1 for simplicity,
as our focus is on the IGM thermal history, though our results are
relatively insensitive to this choice as we terminate our calculations
once the 21-cm signal reaches its emission peak, at which time the
IGM is typically only ∼10–20 per cent ionized.

The kinetic temperature of the bulk IGM is evolved via

3

2

d

dt

(
kBTkntot

μ

)
= εX + εcomp − C, (14)

where εcomp is Compton heating rate density and C represents all
cooling processes, which we take to include Hubble cooling, colli-
sional ionization cooling, recombination cooling, and collisional
excitation cooling using the formulae provided by Fukugita &
Kawasaki (1994). Equations (12)–(14) are solved using the radiative
transfer code1 described in Mirocha et al. (2012).

Given TK, xi, xe, and Ĵα , we can compute the sky-averaged 21-cm
signal via (e.g. Furlanetto 2006)

δTb 
 27(1 − xi)

(
�b,0h

2

0.023

) (
0.15

�m,0h2

1 + z

10

)1/2 (
1 − Tγ

TS

)
,

(15)

1 https://bitbucket.org/mirochaj/rt1d

where

T −1
S ≈ T −1

γ + xcT
−1
K + xαT

−1
α

1 + xc + xα

(16)

is the excitation or ‘spin’ temperature of neutral hydrogen, which
characterizes the number of hydrogen atoms in the hyperfine triplet
state relative to the singlet state, and Tα 
 TK. We compute the col-
lisional coupling coefficient using the tabulated values in Zygelman
(2005), and take xα = 1.81 × 1011Ĵα/(1 + z), i.e. we ignore de-
tailed line profile effects (Chen & Miralda-Escudé 2004; Chuzhoy,
Alvarez & Shapiro 2006; Furlanetto & Pritchard 2006; Hirata 2006).

3 T H E C O D E

The first step in our procedure for computing the global 21-cm
signal – determining the background radiation intensity – is the
most difficult. This step is often treated approximately, by truncat-
ing the integration limits in equations 4 (for Jν) and 11 (for εX)
(e.g. Mesinger, Furlanetto & Cen 2011), or neglected entirely (e.g.
Furlanetto 2006) in the interest of speed. In what follows, we will
show that doing so can lead to large errors in the global 21-cm
signal, but more importantly, such approaches preclude detailed
studies of SED effects.

Other recent works guide the reader through equations (4) and
(11), but give few details about how the equations are solved numer-
ically (e.g. Pritchard & Furlanetto 2007; Santos et al. 2010; Tanaka
et al. 2012). Brute-force solutions to equation (11) are accurate
but extremely expensive, while seemingly innocuous discretization
schemes introduced for speed can induce errors in the global 21-cm
comparable in magnitude to several physical effects we consider in
Section 4. The goal of this section is to forestall confusion about
our methods, and to examine the computational expense of solving
equation (11) accurately.

3.1 Discretizing the RTE

Obtaining precise solutions to equation (4) are difficult because
the integrand is expensive to calculate, mostly due to the optical
depth term, which is itself an integral function (equation 6). One
approach that limits the number of times the integrand in equation
(4) must be evaluated is to discretize in redshift and frequency, and
tabulate the optical depth a priori. Care must be taken, however,
as undersampling the optical depth can lead to large errors in the
background radiation intensity. This technique also requires one to
assume an ionization history a priori, xi(z), which we take to be
xi(z) = constant = 0 over the redshift interval 10 ≤ z ≤ 40. We
defer a detailed discussion of this assumption to Section 5.

The consequences of undersampling the optical depth are shown
in Fig. 1, which shows the X-ray background spectrum at z = 20 for
a population of 10 M� BHs with multicolour disc (MCD) spectra
(Mitsuda et al. 1984) and our default set of parameters, which will
be described in more detail in Section 4 (summarized in Table 1).
Soft X-rays are absorbed over small redshift intervals – in some
cases over intervals smaller than those sampled in the optical depth
table – which lead to overestimates of the soft X-ray background
intensity. Overestimating the soft X-ray background intensity can
lead to significant errors in the resulting heating since soft X-rays are
most readily absorbed by the IGM (recall σ ν ∝ ν−3 approximately).
For a redshift grid with points linearly spaced by an amount �z =
{0.4, 0.2, 0.1, 0.05}, the errors in Jν as shown in Fig. 1 correspond
to relative errors in the heating rate density, εX, of {1.1, 0.44, 0.15,
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Pre-reionization X-ray sources 1215

Figure 1. X-ray background intensity, Jν , at z = 20 assuming a population
of 10 M� BHs. The IGM optical depth, τ ν , is sampled at 128 logarithmically
spaced frequencies between 0.2 and 30 keV, and linearly in redshift by
�z = 0.4 (red), 0.2 (green), 0.1 (blue), and 0.05 (cyan). Poor redshift
resolution always leads to overestimates of the background intensity at soft
X-ray energies (hν � 0.5 keV) since the integrand is a rapidly evolving
function of redshift. The solid black line is the full numerical solution
obtained by integrating equation (4) with a Gaussian quadrature technique,
and the dashed black line is the same calculation assuming the optically thin
xi (z) = constant = 1 limit as opposed to xi (z) = constant = 0. In order to
prevent errors in Jν at all energies hν ≥ 0.2 keV, the redshift dimensions of
τ ν must be sampled at better than �z = 0.05 resolution.

0.04}. Errors in εX due to frequency sampling (128 used points
here) are negligible (relative error <10−4).

To prevent the errors in εX associated with under sampling τ ν , we
must understand how far X-rays of various energies travel before
being absorbed. We estimate a characteristic differential redshift
element over which photons are absorbed by assuming a fully neu-
tral medium, and approximate bound-free photoionization cross-
sections (σ ∝ ν−3), in which case the optical depth (equation 6) can
be written analytically as

τ ν(z, z′) 

(μ

ν

)3
(1 + z)3/2

[
1 −

(
1 + z

1 + z′

)3/2
]

, (17)

where

μ3 ≡ 2

3

n̄0
Hσ0c

H0

√
�m,0

(
ν3

H I + yν3
He I

)
. (18)

Here, σ 0 is the cross-section at the hydrogen ionization threshold,
hνH I and hνHe I are the ionization threshold energies for hydrogen
and helium, respectively, y is the primordial helium abundance by
number, H0 the Hubble parameter today, and �m,0 the matter density
relative to the critical density today.

The characteristic energy hμ 
 366.5 eV may be more familiar
as it relates to the mean-free paths of photons in a uniform medium
relative to the Hubble length, which we refer to as ‘Hubble photons’,
with energy hνHub,

hνHub 
 hμ
[

3
2

]1/3
(1 − xi)1/3(1 + z)1/2


 1.5(1 − xi)1/3
(

1+z
10

)1/2
keV. (19)

The characteristic differential redshift element of interest (which
we refer to as the ‘bound-free horizon’ and denote �zbf) can be

derived by setting τ ν(z, z′) = 1 and taking z′ = z + �zbf in equation
(17). The result is

�zbf 
 (1 + z)

⎧⎨⎩
[

1 −
(

ν/μ√
1 + z

)3
]−2/3

− 1

⎫⎬⎭ . (20)

That is, a photon with energy hν observed at redshift z has experi-
enced an optical depth of 1 since its emission at redshift z + �zbf

and energy hν[1 + �zbf/(1 + z)]. Over the interval 10 � z � 40,
this works out to be 0.1 � �zbf � 0.2 assuming a photon with
frequency ν = μ.

In order to accurately compute the flux (and thus heating), one
must resolve this interval with at least a few points, which explains
the convergence in Fig. 1 once �z ≤ 0.1 for hν � 350 eV. We
discretize logarithmically in redshift (for reasons that will become
clear momentarily) following the procedure outlined in appendix C
of Haardt & Madau (1996), first defining

x ≡ 1 + z, (21)

which allows us to set up a logarithmic grid in x-space such that

R ≡ xl+1

xl

= constant, (22)

where l = 0, 1, 2, . . . , nz − 1. The corresponding grid in photon
energy space is

hνn = hνminR
n−1, (23)

where hνmin is the minimum photon energy we consider, and n =
1, 2, . . . , nν . The number of frequency bins, nν , can be determined
iteratively in order to guarantee coverage out to some maximum
emission energy, hνmax .

The emission frequency, νn′ , of a photon observed at frequency
hνn and redshift zl, emitted at redshift zm is then (i.e. a discretized
form of equation 5)

νn′ = νn

(
1 + zm

1 + zl

)
, (24)

meaning νn′ can be found in our frequency grid at index n′ = n +
m − l.

The advantage of this approach still may not be immediately
obvious, but consider breaking the integral of equation (4) into two
pieces, an integral from zl to zl + 1, and an integral from zl + 1 to
znz−1. In this case, equation (4) simplifies to

Ĵνn (zl) = c

4π
(1 + zl)

2
∫ zl+1

zl

ε̂νn′ (z
′)

H (z′)
e−τνn (zl ,z

′)dz′

+
(

1 + zl

1 + zl+1

)2

Ĵνn+1 (zl+1)e−τνn (zl ,zl+1). (25)

The first term accounts for ‘new’ flux due to the integrated emission
of sources at zl ≤ z ≤ zl + 1, while the second term is the flux due
to emission from all z > zl + 1, i.e. the background intensity at zl + 1

corrected for geometrical dilution and attenuation between zl and
zl + 1.

Equation (25) tells us that by discretizing logarithmically in red-
shift and iterating from high redshift to low redshift we can keep a
‘running total’ on the background intensity. In fact, we must never
explicitly consider the case of m �= l + 1, meaning equation (24) is
simply νn′ = Rνn = νn+1. The computational cost of this algorithm
is independent of redshift, since the flux at zl only ever depends
on quantities at zl and zl + 1. Such is not the case for a brute-force
integration of equation (4), in which case the redshift interval in-
creases with time. The logarithmic approach also limits memory
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1216 J. Mirocha

Figure 2. Accuracy of presented algorithm. Top: relative error in the heating
rate density, εX, as a function of the number of redshift points, nz, used to
sample τ ν , as compared to a brute-force solution to equation (11) using a
double Gaussian quadrature integration scheme. Middle: relative error in
the cumulative heating as a function of nz. Bottom: relative error in the
position of the 21-cm minimum, in redshift (black crosses) and amplitude
(blue crosses). Dotted and dashed lines indicate 0.1 per cent and 1 per cent
errors, respectively.

consumption, since we need not tabulate the flux or optical depth in
3D – we only ever need to know the optical depth between redshifts
zl and zl + 1 – in addition to the fact that we can discard the flux
at zl + 2, Jν(zl + 2), once we reach zl. A linear discretization scheme
would require 3D optical depth tables with nνn

2
z elements, which

translates to tens of gigabytes of memory for the requisite redshift
resolution (to be discussed in the next subsection).

Finally, linear discretization schemes prevent one from keeping
a ‘running total’ on the background intensity, since the observed
flux at redshift zl and frequency νn cannot (in general) be traced
back to rest frame emission from redshifts zl′ or frequencies νn′

within the original redshift and frequency grids (over l and n). The
computational cost of performing the integral in equation (4) over
all redshifts z′ > z is prohibitive, as noted by previous authors (e.g.
Mesinger et al. 2011).

3.2 Accuracy and expense

The accuracy of this approach is shown in Fig. 2 as a function
of the number of redshift bins in the optical depth lookup table,
nz. Errors in the heating rate density (top), and cumulative heating
(middle), �

∫
εXdt , drop below 0.1 per cent at all 10 ≤ z ≤ 40

once nz � 4000, at which time errors in the position of the 21-cm
minimum (bottom) are accurate to ∼0.01 per cent. Given this result,
all calculations reported in Section 4 take nz = 4000. For reference,
errors of the order of 0.1 per cent correspond to ∼0.1 mK errors
in the amplitude of the 21-cm minimum in our reference model,
which we will soon find is much smaller than the changes induced
by physical effects.

Many previous studies avoided the expense of equation (4) by
assuming that a constant fraction of the X-ray luminosity density is
deposited in the IGM as heat (e.g. Furlanetto 2006). A physically
motivated approximation is to assume that photons with short mean-

free paths (e.g. those that experience τ ν ≤ 1) are absorbed and
contribute to heating, and all others do not (e.g. Mesinger et al.
2011). This sort of ‘step attenuation’ model was recently found to
hold fairly well in the context of a fluctuating X-ray background,
albeit for a single set of model parameters (Mesinger & Furlanetto
2009).

An analogous estimate for the heating caused by a uniform radia-
tion background assumes that photons with mean-free paths shorter
than a Hubble length are absorbed, and all others are not. We de-
fine ξX as the fraction of the bolometric luminosity density that is
absorbed locally, which is given by

ξX(z) ≈
∫ νHub

νmin

Iνdν

(∫ νmax

νmin

Iνdν

)−1

, (26)

where hνHub is given by equation (19). There are approximate ana-
lytic solutions to the above equation for power-law sources (would
be exact if not for the upper integration limit, νHub), though ξX

must be computed numerically for the MCD spectra we consider.
We take hνmin = 200 eV and hνmax = 30 keV for the duration of
this paper. The heating rate density associated with a population of
objects described by ξX and Lbol is

εX(z) = ξX(z)Lbol(z)fheat, (27)

where fheat is the fraction of the absorbed energy that is deposited
as heat. Because there is no explicit dependence on photon energy
in this approximation, we use the fitting formulae of Shull & van
Steenberg (1985) to compute fheat.

The consequences of using equations (26) and (27) for the global
21-cm signal are illustrated in Fig. 3. Steep power-law sources can
be modelled quite well (signal accurate to 1–2 mK) using equations
(26) and (27) since a large fraction of the X-ray emission occurs
at low energies. In contrast, heating by sources with increasingly
flat (decreasing spectral index α) spectra is poorly modelled by
equations (26) and (27), inducing errors in the global 21-cm signal of
order ∼5 mK (α = −1.5) and ∼15 mK (α = −0.5). The same trend
holds for heating dominated by sources with an MCD spectrum,
in which case harder spectra correspond to less massive BHs. We
will see in the next section that these errors are comparable to the
differences brought about by real changes in the SED of X-ray
sources.

4 AC C R E T I N G B H s IN T H E E A R LY U N I V E R S E

Using the algorithm presented in the previous section, we now in-
vestigate the effects of varying four parameters that govern the
SED of an accreting BH: (1) the mass of the BH, M•, which de-
termines the characteristic temperature of an optically thick geo-
metrically thin disc (Shakura & Sunyaev 1973), (2) the fraction of
disc photons that are up-scattered (Shapiro, Lightman & Eardley
1976) by a hot electron corona, fsc, (3) the power-law index2 of
the resulting emission, α (using the SIMPL model; Steiner et al.
2009), and (4) the column density of neutral hydrogen that lies
between the accreting system and the IGM, NHI. Because we as-
sume xH II = xHe II, the absorbing column density actually has an
optical depth of τν = NHIσν,H I(1 + yσν,He I/σν,H I), where y is the
primordial helium abundance by number, and σ ν is the bound-free
absorption cross-section for H I and He I. A subset of the spectral

2 We define the spectral index as Lν ∝ να , where Lν is a specific luminosity
proportional to the energy of a photon with frequency ν, per logarithmic
frequency interval dν.
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Pre-reionization X-ray sources 1217

Figure 3. Testing the approximation of equations (26) and (27). Dashed lines represent the approximate solutions, while solid lines represent the full solution
for the global 21-cm signal using the procedure outlined in Section 3. Left: X-ray sources are assumed to have power-law (PL) SEDs with spectral index α,
extending from 0.2 to 30 keV. Right: X-ray sources are assumed to have MCD SEDs (Mitsuda et al. 1984). All sources have been normalized to have the
same luminosity density above 0.2 keV (3.4 × 1040erg s−1 (M� yr−1)−1), and all calculations are terminated once the emission peak (12 � z � 14) has
been reached. For the hardest sources of X-rays considered (left: α = −0.5, right: M• = 10 M�), the global 21-cm minimum is in error by up to ∼15 mK in
amplitude and �z 
 0.5 in position when equation (26) is used to compute εX.

models we consider is shown in Fig. 4. Note that more efficient
Comptonization (i.e. increasing fsc) and strong neutral absorption
(increased NHI) act to harden the intrinsic disc spectrum (top panel),
while increasing the characteristic mass of accreting BHs acts to
soften the spectrum (bottom panel).

To compute the X-ray heating as a function of redshift, εX(z),
we scale our SED of choice to a comoving (bolometric) luminosity
density assuming that a constant fraction of gas collapsing on to
haloes accretes on to BHs, i.e.

ρ̇•(z) = f•ρ̄0
b

dfcoll(Tmin)

dt
. (28)

Assuming Eddington-limited accretion, we obtain a comoving bolo-
metric ‘accretion luminosity density’,

Lacc = 6.3 × 1040 erg s−1 cMpc−3

×
(

0.9

ξacc

) (
ρ̇•(z)

10−6 M� yr−1 cMpc−3

)
, (29)

where

ξacc = 1 − η

η
fedd (30)

and η and fedd are the radiative efficiency and Eddington ratio,
respectively. To be precise, fedd represents the product of the Ed-
dington ratio and duty cycle, i.e. what fraction of the time X-ray
sources are actively accreting, which are completely degenerate.
This parametrization is very similar to that of Mirabel et al. (2011),
though we do not explicitly treat the binary fraction, and our ex-
pression refers to the bolometric luminosity density rather than the
2–10 keV luminosity density. Our model for the comoving X-ray
emissivity is then

ε̂ν(z) = Lacc(z)
Iν

hν
, (31)

where Iν once again represents the SED of X-ray sources, and is nor-
malized such that

∫ ∞
0 Iνdν = 1. Power-law sources must truncate

the integration limits in this normalization integral so as to avoid
divergence at low energies, though MCD models do not, since the

soft X-ray portion of the spectrum is limited by the finite size of
the accretion disc (which we take to be rmax = 103 Rg, where Rg =
GM•/c2).

It is common in the 21-cm literature to instead relate the comoving
X-ray luminosity density, LX, to the SFR density, ρ̇∗, as

LX = cXfXρ̇∗(z), (32)

where the normalization factor cX is constrained by observations
of nearby star-forming galaxies (e.g. Grimm, Gilfanov & Sunyaev
2003; Ranalli, Comastri & Setti 2003; Gilfanov, Grimm & Sunyaev
2004), and fX parametrizes our uncertainty in how the LX−SFR
relation evolves with redshift. The detection of a 21-cm signal con-
sistent with fX > 1 could provide indirect evidence of a top-heavy
stellar initial mass function (IMF) at high-z since fX encodes in-
formation about the abundance of high-mass stars and the binary
fraction, both of which are expected to increase with decreasing
metallicity.

However, assumptions about the SED of X-ray sources are
built-in to the definition of fX. The standard value of cX = 3.4 ×
1040 erg s−1 (M� yr−1)−1 (Furlanetto 2006) is an extrapolation of
the 2−10 keV LX−SFR relation of Grimm et al. (2003), who found
L2−10 keV = 6.7 × 1039 erg s−1 (M� yr−1)−1, to all energies hν >

200 eV assuming an α = −1.5 power-law spectrum. This means
any inferences about the stellar IMF at high-z drawn from con-
straints on fX implicitly assume an α = −1.5 power-law spectrum
at photon energies above 0.2 keV. Because our primary interest is
in SED effects, we avoid the fX parametrization and keep the nor-
malization of the X-ray background (given by ρ̇•/ξacc) and its SED
(Iν) separate. We note that if one adopts a pure MCD spectrum
(i.e. fsc = NHI = 0) for a 10 M� BH and set f• = 10−5 (as in our
reference model), the normalization of equation (29) corresponds
to fX ≈ 2 × 103 assuming cX = 2.61 × 1039 erg s−1 (M� yr)−1

(Mineo, Gilfanov & Sunyaev 2012b). Despite this enhancement in
the total X-ray luminosity density, our reference model produces an
absorption trough at z ≈ 22 and δTb ≈ −100 mK, similar to past
work that assumed fX = 1. This is a result of our choice for the
reference spectrum, a MCD, which is much harder than the α =
−1.5 power-law spectrum originally used to define fX.
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1218 J. Mirocha

Figure 4. Subset of SEDs used in this work. Top panel: assuming M• =
10 M�, varying the fraction of disc photons scattered into the high-energy
power-law tail, fsc, and the spectral index of the resulting high-energy emis-
sion, α, using the SIMPL model (Steiner et al. 2009). Solid, dashed, and
dotted lines of different colours correspond to high energy emission with
power-law indices of α = −2.5, α = −1.5, and α = −0.5 respectively, with
the colour indicating fsc as shown in the legend. Bottom panel: pure MCD
SEDs for M• = 10−104 M�, with no intrinsic absorption or Comptoniza-
tion of the disc spectrum. The solid black line is our reference model, and
is the same in both panels.

Our main result is shown in Fig. 5. The effects of the coronal
physics parameters fsc and α are shown in the left-hand panel, and
only cause deviations from the reference model if fsc > 0.1 (for
any −2.5 ≤ α ≤ −0.5). Increasing fsc and decreasing α act to
harden the spectrum, leading to a delay in the onset of heating and
thus deeper absorption feature. With a maximal value of fsc = 1
and hardest power-law SED of α = −0.5, the absorption trough
becomes deeper by ∼10 mK. In the right-hand panel, we adopt fsc

= 0.1 and α = −1.5, and turn our attention to the characteristic mass
of accreting BHs and the neutral absorbing column, varying each
by a factor of 100, each of which has a more substantial impact
individually on the 21-cm signal than fsc and α. The absorption
trough varies in amplitude by up to ∼50 mK and in position by
�z ≈ 2 from the hardest SED (M• = 10 M�, NHI = 1022 cm−2)
to softest SED (M• = 103 M�, NHI = 0 cm−2) we consider. The
absorbing column only becomes important once NHI � 1020 cm−2.

Our study is by no means exhaustive. Table 1 lists parameters
held constant for the calculations shown in Fig. 5. Our choices for
several parameters in Table 1 that directly influence the thermal
history will be discussed in the next section. While several other

parameters could be important in determining the locations of 21-
cm features, for instance, Nion is likely �4000 for Population III
(PopIII) stars (e.g. Bromm, Kudritzki & Loeb 2001; Schaerer 2002;
Tumlinson, Shull & Venkatesan 2003), we defer a more complete
exploration of parameter space, and assessment of degeneracies
between parameters, to future work.

5 D I SCUSSI ON

The findings of the previous section indicate that uncertainty in the
SED of X-ray sources at high-z could be a significant complication
in the interpretation of upcoming 21-cm measurements. Details of
Comptonization are a secondary effect in this study, though still at
the level of measurement errors predicted by current signal extrac-
tion algorithms (likely ∼10 mK for the absorption trough; Harker
et al. 2012). The characteristic mass of accreting BHs, M•, and the
amount of absorption intrinsic to BH host galaxies, parametrized by
a neutral hydrogen column density NHI, influence the signal even
more considerably. In this section, we examine these findings in the
context of other recent studies and discuss how our methods and
various assumptions could further influence our results.

5.1 An evolving IGM optical depth

Central to our approach to solving equation (4) is the ability to
tabulate the IGM optical depth (equation 6). This requires that we
assume a model for the ionization history a priori, even though
the details of the X-ray background will in general influence the
ionization history to some degree.3 Because we focus primarily on
21-cm features expected to occur at z > 10, we assume xi = xe = 0
at all z > 10 when generating τ ν(z, z′).

The effects of this approximation are shown in Fig. 6, in which we
examine how different ionization histories (and thus IGM opacities)
affect the background flux, Jν . Because we assume a neutral IGM
for all z ≥ 10, we always underestimate the background flux, since
an evolving IGM optical depth due to reionization of the IGM allows
X-rays to travel further than they would in a neutral medium. The
worst-case-scenario for this xi(z) = 0 approximation occurs for
very extended ionization histories (blue line in top panel of Fig. 6),
in which case the heating rate density at z = {10, 12, 14} is in error
by factors of {1.2, 0.5, 0.2}. Because the 21-cm signal is likely
insensitive to εX once reionization begins,4 we suspect this error
is negligible in practice. As pointed out in Mirocha et al. (2013),
the 21-cm emission feature can serve as a probe of εX so long
as independent constraints on the ionization history are in hand.
In this case, we would simply tabulate τ ν using the observational
constraints on xi(z), and mitigate the errors shown in Fig. 6. Our
code could also be modified to compute the optical depth on-the-fly
once xi exceeds a few per cent, indicating the beginning of the EoR.

3 Evolution of the volume filling factor of H II regions, xi, is the same in
each model we consider because we have not varied the number of ionizing
photons emitted per baryon of star formation, Nion, or the star formation
history, parametrized by the minimum virial temperature of star-forming
haloes, Tmin, and the star formation efficiency, f∗. X-rays are only allowed
to ionize the bulk IGM in our formalism, whose ionized fraction is xe � 0.1
per cent at all z � 12 in our models, meaning xi ≈ xi . The mid-point of
reionization occurs at z 
 10.8 in each model we consider.
4 Though ‘cold reionization’ scenarios have not been completely ruled out,
recent work is inconsistent with a completely unheated z ≈ 8 IGM (Parsons
et al. 2014).
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Pre-reionization X-ray sources 1219

Figure 5. Evolution of the 21-cm brightness temperature for different BH SED models. Left: effects of coronal physics, parametrized by the fraction of disc
photons up-scattered by a hot electron corona, fsc, and the resulting spectral index of up-scattered emission, α, using the SIMPL Comptonization model of
Steiner et al. (2009). The colours correspond to different values of fsc, while the width of each band represents models with −2.5 ≤ α ≤ −0.5 (the upper edge
of each band corresponds to the softest SED at fixed fsc, in this case α = −2.5). Right: effects of BH mass and neutral absorbing column. Colours correspond
to NHI, while the width of each band represents models with 10 ≤ M•/M� ≤ 103 (the upper edge of each band corresponds to the softest SED at fixed NHI,
in this case M• = 103 M�). The dashed black line is our reference ‘pure MCD’ model with M• = 10 M�. The black and blue regions overlap considerably,
indicating that absorbing columns of NHI � 1020 cm2 are required to harden the spectrum enough to modify the thermal history. Every realization of the signal
here has the exact same ionization history, Lyα background history, and BH accretion history. As in Fig. 3, all calculations are terminated once the peak in
emission is reached. Coronal physics influences the global 21-cm minimum at the � 10 mK level, while M• is a 10–20 mK effect and NHI is potentially a
∼50 mK effect.

Table 1. Parameters held constant in this work. Note that PS in the first
row refers to the original analytic halo mass function derived by Press &
Schechter (1974). Our reference model adopts this set of parameters and
a pure MCD spectrum (i.e. NHI = fsc = 0) assuming a characteristic
BH mass of M• = 10 M�.

Parameter Value Description

hmf PS Halo mass function
Tmin 104 K Min. virial temperature of star-forming haloes
μ 0.61 Mean molecular weight of collapsing gas
f∗ 10−1 Star formation efficiency
f• 10−5 Fraction of collapsing gas accreted on to BHs
NLW 9690 Photons per stellar baryon with να ≤ ν ≤ νLL

Nion 4000 Ionizing photons emitted per stellar baryon
fesc 0.1 Escape fraction
rin 6 Rg Radius of inner edge of accretion disc
rmax 103 Rg Max. radius of accretion disc
η 0.1 Radiative efficiency of accretion
fedd 0.1 Product of Eddington ratio and duty cycle
hνmin 0.2 keV Softest photon considered
hνmax 30 keV Hardest photon considered

5.2 Neutral absorption

Our choice of NHI is consistent with the range of values adopted
in the literature in recent years (e.g. Mesinger, Ferrara & Spiegel
2013), which are chosen to match constraints on neutral hydrogen
absorption seen in high-z gamma-ray burst spectra (which can also
be explained if reionization is patchy or not complete by z ≈ 7;
Totani et al. 2006; Greiner et al. 2009). If we assume that the
absorbing column is due to the host galaxy interstellar medium
(ISM), then it cannot be used solely to harden the X-ray spectrum
– it must also attenuate soft UV photons from stars, and thus be
related to the escape fraction of ionizing radiation, fesc. In the most
optimistic case of a PopIII galaxy (which we take to be a perfect

blackbody of 105 K), an absorbing column of NHI = 1018.5 cm−2

corresponds to fesc 
 0.01, meaning every non-zero column density
we investigated in Fig. 5 would lead to the attenuation of more
than 99 per cent of ionizing stellar radiation, thus inhibiting the
progression of cosmic reionization considerably.

An alternative is to assume that the absorbing column is intrinsic
to accreting systems, though work on galactic X-ray binaries casts
doubt on such an assumption. Miller, Cackett & Reis (2009) moni-
tored a series of photoelectric absorption edges during BH spectral
state transitions, and found that while the soft X-ray spectrum varied
considerably, the column densities inferred by the absorption edges
remained roughly constant. This supports the idea that evolution in
the soft X-ray spectrum of X-ray binaries arises due to evolution
in the source spectrum, and that neutral absorption is dominated by
the host galaxy ISM.

For large values of NHI, reionization could still proceed if the
distribution of neutral gas in (at least some) galaxies were highly
anisotropic. Recent simulations by Gnedin, Kravtsov & Chen (2008)
lend credence to this idea, displaying order-of-magnitude deviations
in the escape fraction depending on the propagation direction of
ionizing photons – with radiation escaping through the polar regions
of disc galaxies preferentially. Wise & Cen (2009) performed a
rigorous study of ionizing photon escape using simulations of both
idealized and cosmological haloes, reaching similar conclusions
extending to lower halo masses. The higher mass haloes in the Wise
& Cen (2009) simulation suite exhibited larger covering fractions of
high column density gas (e.g. Fig. 10), which could act to harden the
spectrum of such galaxies, in addition to causing very anisotropic
H II regions.

If there existed a population of miniquasars powered by inter-
mediate mass BHs, and more massive BHs at high-z occupy more
massive haloes, then more massive haloes should have softer X-ray
spectra (see Fig. 4) and thus heat the IGM more efficiently. How-
ever, if they also exhibit larger covering fractions of high column

MNRAS 443, 1211–1223 (2014)

 at U
niversity of C

olorado on M
arch 3, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


1220 J. Mirocha

Figure 6. Consequences of the xi = constant = 0 approximation on the
background radiation field for our reference model (see Table 1). Top:
tanh ionization histories considered, i.e. xi (z) ∝ tanh((z − zr )/�z). Bot-
tom: angle-averaged background intensity, Jν , at z = 10, 12 and 14 (black,
blue, green) assuming a neutral IGM for all z (solid), compared to increas-
ingly early and extended reionization scenarios (dotted and dashed). Errors
in the background intensity due to the xi = constant = 0 could be important
at z � 14, assuming early and extended reionization scenarios (e.g. zr = 12,
�z = 4), though by this time the global 21-cm signal is likely insensitive to
the thermal history.

density gas, the soft X-ray spectrum will be attenuated to some
degree – perhaps enough to mimic an intrinsically harder source of
X-rays. This effect may be reduced in galaxies hosting an AGN,
since X-rays partially ionize galactic gas and thus act to enhance
the escape fraction of hydrogen- and helium- ionizing radiation
(Benson, Venkatesan & Shull 2013). Ultimately, the 21-cm sig-
nal only probes the volume-averaged emissivity, so if soft X-ray
sources reside in high-mass haloes, they would have to be very
bright to compensate for their rarity, and to contribute substantially
to the heating of the IGM.

Lastly, it is worth mentioning that the hardness of the radiation
field entering the ‘neutral’ bulk IGM is not the same as that of the
radiation field leaving the galaxy (whose edge is typically defined
as its virial radius) since our model treats H II regions and the bulk
IGM separately. As a result, there is an extra step between the
intrinsic emission (that leaving the virial radius) and the IGM: Of
the photons that escape the virial radius, what fraction of them (as a
function of frequency) contribute to the growth of the galactic H II

region? The IGM penetrating radiation field is hardened as a result,
and could become even harder and more anisotropic based on the
presence or absence of large-scale structure such as dense sheets

and filaments.5 Additionally, sources with harder spectra lead to
more spatially extended ionization fronts, whose outskirts could be
important sources of 21-cm emission (e.g. Venkatesan & Benson
2011).

5.3 Accretion physics

We have assumed throughout a radiative efficiency of η = 0.1,
which is near the expected value for a thin disc around a non-
spinning BH assuming the inner edge of the disc corresponds to the
innermost stable circular orbit, i.e. rin = risco = 6Rg . The radiative
efficiency is very sensitive to BH spin, varying between 0.05 ≤ η

≤ 0.4 (Bardeen 1970) from maximal retrograde spin (disc and BH
angular momentum vectors are antiparallel), to maximal prograde
spin (disc and BH ‘rotate’ in the same sense). While the spin of
stellar mass BHs is expected to be more-or-less constant after their
formation (King & Kolb 1999), the spin distribution at high-z is
expected to be skewed towards large values of the spin parameter,
leading to enhanced radiative efficiencies η > 0.1 (Volonteri et al.
2005).

Our choice of fedd = 0.1 is much less physically motivated, being
that it is difficult both to constrain observationally and predict the-
oretically. For X-ray binaries, fedd should in general be considered
not just what fraction of time the BH is actively accreting, but what
fraction of the time it is in the high/soft state when the MCD model
is appropriate. We ignore this for now as it is poorly constrained,
but note that the emission during the high/soft state could dominate
the heating even if more time is spent in the low/hard state simply
because it is soft X-rays that dominate the heating.

While we do not explicitly attempt to model nuclear BHs, equa-
tion (28) could be used to model their comoving emissivity. Note,
however, that this model is not necessarily self-consistent. We have
imposed an accretion history via the parameters f• and Tmin, though
the Eddington luminosity density depends on the mass density of
BHs. For extreme models (e.g. large values of f•), the mass den-
sity of BHs required to sustain a given accretion luminosity density
can exceed the mass density computed via integrating the accretion
rate density over time. To render such scenarios self-consistent, one
must require BH formation to cease or the ejection rate of BHs from
galaxies to become significant (assuming ejected BHs no longer ac-
crete), or both. The value of f• we adopt is small enough that we can
neglect these complications for now, and postpone more detailed
studies including nuclear BHs to future work.

5.4 Choosing representative parameter values

The results of recent population synthesis studies suggest that X-ray
binaries are likely to be the dominant source of X-rays at high-z.
Power et al. (2013) modelled the evolution of a single stellar pop-
ulation that forms in an instantaneous burst, tracking massive stars

5 In fact, the metagalactic background could be even harder than this, given
that soft X-rays are absorbed on small scales and thus may not deserve to
be included in a ‘global’ radiation background. Madau et al. (2004) argued
for Emin = 150 eV since 150 eV photons have a mean-free path comparable
to the mean separation between sources in their models, which formed in
3.5σ density peaks at z ∼ 24. However, for rare sources, a global radiation
background treatment may be insufficient (e.g. Davies & Furlanetto 2014).
We chose Emin = 0.2 keV to be consistent with other recent work on the 21-
cm signal (e.g. Pritchard & Loeb 2012), but clearly further study is required
to determine reasonable values for this parameter. At least for large values
of NHI, the choice of Emin is irrelevant.

MNRAS 443, 1211–1223 (2014)

 at U
niversity of C

olorado on M
arch 3, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


Pre-reionization X-ray sources 1221

evolving off the main sequence, and ultimately the X-ray binaries
that form. Taking Cygnus X-1 as a spectral template, they com-
pute the ionizing luminosity of the population with time (assuming
a Kroupa IMF) and find that HMXBs dominate the instantaneous
ionizing photon luminosity starting 20–30 Myr after the initial burst
of star formation depending on the binary survival fraction. Fragos
et al. (2013) performed a similar study, but instead started from
the Millennium II simulation halo catalogue and applied popula-
tion synthesis models to obtain the evolution of the background
X-ray spectrum and normalization from z ∼ 20 to present day.
They find that X-ray binaries could potentially dominate the X-ray
background over AGN (at least from 2 to 10 keV) at all redshifts
higher than z ∼ 5.

Though our reference model effectively assumes that HMXBs
dominate the X-ray background at high-z, supernovae (Oh 2001;
Furlanetto & Loeb 2004), accreting intermediate-mass BHs,
whether they be solitary ‘miniquasars’ (e.g. Haiman & Loeb 1998;
Wyithe & Loeb 2003; Kuhlen & Madau 2005) or members of bi-
naries, and thermal bremsstrahlung radiation from the hot ISM
of galaxies could be important X-ray sources as well (Mineo,
Gilfanov & Sunyaev 2012a; Pacucci et al. 2014). In principle,
our approach could couple detailed spectral models, composed
of X-ray emission from a variety of sources, to the properties
of the IGM with time, and investigate how the details of popu-
lation synthesis models, for example, manifest themselves in the
global 21-cm signal. Such studies would be particularly powerful
if partnered with models of the 21-cm angular power spectrum,
observations of which could help break SED-related degenera-
cies (Pritchard & Furlanetto 2007; Mesinger et al. 2013; Pacucci
et al. 2014).

5.5 Helium effects

The xH I = xHe I approximation we have made throughout is com-
mon in the literature, and has been validated to some extent by the
close match in H I and He I global ionization histories computed
in Wyithe & Loeb (2003) and Friedrich et al. (2012), for example.
However, recent studies of the ionization profiles around stars and
quasars (e.g. Thomas & Zaroubi 2008; Venkatesan & Benson 2011)
find that more X-ray luminous galaxies have larger He I regions than
H II regions. Given that the metagalactic radiation field we consider
in this work is even harder than the quasar-like spectra considered
in the aforementioned studies, the H I and He I fractions in the bulk
IGM may differ even more substantially than they do in the outskirts
of H II/He I regions near quasars.

We have neglected a self-consistent treatment of helium in this
work, though more detailed calculations including helium could
have a substantial impact on the ionization and thermal history.
Ciardi, Bolton & Maselli (2012) showed that radiative transfer sim-
ulations including helium, relative to their hydrogen-only coun-
terparts, displayed a slight delay in the redshift of reionization,
since a small fraction of energetic photons are absorbed by he-
lium instead of hydrogen. The simulations including helium also
exhibited an increase in the IGM temperature at z � 10 due to
helium photoheating. At z � 10, the volume-averaged tempera-
ture in the hydrogen-only simulations was actually larger due to
the larger volume of ionized gas. It is difficult to compare such
results directly to our own, as our interest lies in the IGM tem-
perature outside of ionized regions. Because of this complication,
we defer a more detailed investigation of helium effects to future
work.

6 C O N C L U S I O N S

Our conclusions can be summarized as follows.

(i) Approximate solutions to the cosmological RTE overestimate
the heating rate density in the bulk IGM, leading to artificially
shallower absorption features in the global 21-cm signal, perhaps
by ∼15−20 mK if sources with hard spectra dominate the X-ray
background (Fig. 3).

(ii) Brute-force solutions are computationally expensive, which
limits parameter space searches considerably. The discretization
scheme of Haardt & Madau (1996) is fast, though exquisite redshift
sampling is required in order to accurately model X-ray heating
(Fig. 2).

(iii) More realistic X-ray spectra are harder than often used
power-law treatments (Fig. 4), and thus lead to deeper absorption
features in the global 21-cm signal at fixed bolometric luminosity
density. While the details of coronal physics can harden a ‘pure
MCD’ spectrum enough to modify the global 21-cm absorption
feature at the ∼10 mK level (in the extreme case of fsc = 1 and
α = −0.5), the characteristic mass of accreting BHs (amount of
neutral absorption in galaxies) has an even more noticeable impact,
shifting the absorption trough in amplitude by ∼20 ( ∼ 50) mK and
in redshift by �z ≈ 0.5 (�z ≈ 2) (Fig. 5).

(iv) Care must be taken when using the local LX−SFR relation to
draw inferences about the high-z stellar IMF, as assumptions about
source SEDs are built-in to the often used normalization factor
fX. Even if the high-z X-ray background is dominated by X-ray
binaries, the parameters governing how significantly the intrinsic
disc emission is processed influence the signal enormously, and
could vary significantly from galaxy to galaxy.

Though our code was developed to study the global 21-cm sig-
nal, it can be used as a stand-alone radiation background calcu-
lator, whose output could be easily integrated into cosmological
simulation codes to investigate large-scale feedback. It is publicly
available,6 and remains under active development.
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Chen X., Miralda-Escudé J., 2004, ApJ, 602, 1
Chuzhoy L., Alvarez M. A., Shapiro P. R., 2006, ApJ, 648, L1
Ciardi B., Salvaterra R., Di Matteo T., 2010, MNRAS, 401, 2635
Ciardi B., Bolton J. S., Maselli A., 2012, MNRAS, 423, 558
Davies F. B., Furlanetto S. R., 2014, MNRAS, 437, 1141
Dijkstra M., Gilfanov M., Loeb A., Sunyaev R., 2012, MNRAS, 421, 213
Fabbiano G., 2006, ARA&A, 44, 323
Fialkov A., Barkana R., Visbal E., 2014, Nature, 506, 197
Field G. B., 1958, Proc. IRE, 46, 240
Fragos T., Lehmer B. D., Naoz S., Zezas A., Basu-Zych A., 2013, ApJ, 776,

L31
Friedrich M. M., Mellema G., Iliev I. T., Shapiro P. R., 2012, MNRAS, 421,

2232
Fukugita M., Kawasaki M., 1994, MNRAS, 269, 563
Furlanetto S. R., 2006, MNRAS, 371, 867
Furlanetto S. R., Loeb A., 2004, ApJ, 611, 642
Furlanetto S. R., Pritchard J. R., 2006, MNRAS, 372, 1093
Furlanetto S. R., Stoever S. J., 2010, MNRAS, 404, 1869
Furlanetto S. R., Oh S. P., Briggs F. H., 2006, Phys. Rep., 433, 181
Gilfanov M., Grimm H.-J., Sunyaev R., 2004, MNRAS, 347, L57
Gnedin N. Y., Kravtsov A. V., Chen H. W., 2008, ApJ, 672, 765
Greenhill L. J., Bernardi G., 2012, in Komonjinda S., Kovalev Y., Ruffolo

D., eds, Invited review to the 11th Asian-Pacific Regional IAU Meeting
2011, NARIT Conf. Ser., 1, preprint (arXiv:1201.1700)

Greiner J. et al., 2009, ApJ, 693, 1610
Grimm H.-J., Gilfanov M., Sunyaev R., 2003, MNRAS, 339, 793
Haardt F., Madau P., 1996, ApJ, 461, 20
Haiman Z., Loeb A., 1998, ApJ, 503, 505
Haiman Z., Rees M. J., Loeb A., 1997, ApJ, 476, 458
Haiman Z., Abel T., Rees M. J., 2000, ApJ, 534, 11
Harker G. J. A., Pritchard J. R., Burns J. O., Bowman J. D., 2012, MNRAS,

419, 1070
Hirata C. M., 2006, MNRAS, 367, 259
Jeon M., Pawlik A. H., Bromm V., Milosavljević M., 2014, MNRAS, 440,
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Voytek T. C., Natarajan A., Jáuregui Garcı́a J. M., Peterson J. B., López-Cruz
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APPENDI X A : A NA LY TI C TEST PRO BLEM

In this section, we test our code with a double power-law form for
the X-ray emissivity, ε̂ν(z) ∝ (1 + z)βνα−1, noted by Meiksin &
White (2003) to yield analytic solutions in two important limiting
cases. In the optically thin limit (e.g. the cosmologically limited,
CL, case of Meiksin & White 2003, in which xi = 1 at all redshifts),
we find

Ĵν,CL(z) = c

4π

ε̂ν(z)

H (z)

(1 + z)9/2−(α+β)

α + β − 3/2

× [
(1 + zf )

α+β−3/2 − (1 + z)α+β−3/2
]
. (A1)

In the Lyα literature, it is common to accommodate the alternative
‘absorption-limited’ (AL) case in which τ ν > 0, by defining the
‘attenuation length’, r0, as exp [ − τ ν(z, z′)] ≡ exp [ − lH(z, z′)/r0],
where lH is the proper distance between redshifts z and z′. Instead,
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we will adopt the neutral-medium approximation of equation (20)
(i.e. xi = 0), which permits the partially analytic solution

Ĵν,AL(z) = c

4π

ε̂ν(z)

H (z)
(1 + z)9/2−(α+β)

× exp

[
−

(μ

ν

)3
(1 + z)3/2

]
Aν(α, β, z, zf ) (A2)

with

Aν ≡
∫ z′=zf

z′=z

(1 + z′)α+β−5/2 exp

[(μ

ν

)3 (1 + z)3

(1 + z′)3/2

]
dz′. (A3)

The function Aν has analytic solutions (in the form of exponential
integrals) only for α + β = 3n/2 where n is a positive integer, which
represents physically unrealistic scenarios.

The metagalactic spectral index in this case works out to be

αMG ≡ d log Jν

d log ν
= α + 3

(μ

ν

)3
(1 + z)3/2

[
1 − Bν(1 + z)3/2

]
,

(A4)

where

Bν = A−1
ν

∫ zf

z

(1 + z′)α+β−4 exp

[(μ

ν

)3 (1 + z)3

(1 + z′)3/2

]
dz′. (A5)

As ν → ∞, the second term vanishes, leaving the optically thin
limit, αMG = α. As ν → 0, Bν → 0, meaning αMG = α + 3. The
‘break’ in the cosmic X-ray background spectrum occurs when
αMG = 0, corresponding to a photon energy of

hν∗ = hμ(1 + z)

{
3

α

[Bν∗ − (1 + z)−3/2
]}1/3

(A6)

which must be solved iteratively. Solutions are presented in Fig. A1
for α = −1.5, β = −3, ε̂ν(z0) = 10−2 for z0 = 10, zf = 15, and
show good agreement between analytic and numerical solutions.

Figure A1. Cosmic X-ray background spectrum at z = 20 for α = −1.5 and
β = −3. Normalization of the y-axis can be scaled arbitrarily depending
on the normalization of the emissivity. The deviation at high energies is
due to the fact that the analytic solution is not truncated by zf or Emax ,
meaning there are always higher energy photons redshifting to energies
hν ≤ hνmax . The numerical solutions are computed with finite integration
limits and truncated at Emax , such that the emissivity at hν > hνmax is zero,
resulting in no flux at hν ≥ hνmax . Elsewhere, the agreement is very good,
with discrepancies arising solely due to the use of approximate bound-free
photoionization cross-sections in the analytic solution.
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