Challenges of Using Galaxy Clusters with Cool Cores for Precision Cosmology

Jack O. Burns

Center for Astrophysics and Space Astronomy University of Colorado, Boulder

Collaborators: Eric Hallman & Brennan Gantner, University of Colorado Patrick Motl, LSU Michael Norman, University of California, San Diego

Aspen Winter Conference on Clusters of Galaxies as Cosmological Probes February 12, 2007

(adapted from A. Fabian)

Cooling Core vs Non-Cooling Core Clusters

Simple Cooling Flow Model

- Assumes an isolated, spherical cluster in quasi-hydrostatic equilibrium.
- Central gas thermally cools from T_{virial} at constant pressure driving a subsonic accretion flow onto the central galaxy.
- Expect mass accretion rates of hundreds of solar masses per year.

Why "Cooling Flows" Don't Work

- End-products of presumed 100 M_{\odot} /yr infall are not seen:
 - Star-formation <1000 times of expected rate
 - Little or no HI
 - Molecules like CO not detected in abundance or over extended volume
- Central temperatures observed to be not less than ~0.3•T_{virial}.
- Simple model does not account for on-going accretion/mergers from supercluster environment, producing turbulent, shock-filled ICM => such clusters may be far from dynamical equilibrium.
- Does not explain why only 49% of clusters from the HIFLUGCS sample (Chen et al. 2006) have cool cores.

Adaptive Mesh Refinement (AMR) Simulations of Cluster Formation and Evolution

Enzo (e.g., O'Shea et al. 2006, http://cosmos.ucsd.edu/enzo)

•ACDM Cosmology with $O_m = 0.3$, $O_b = 0.026$, $O_A = 0.7$, h = 0.7, and $s_8 = 0.9$. • Hydro + N-body code uses AMR to achieve high resolution (2.0 to 15.6 h⁻¹ kpc) in

dense regions.

- Simulation volume is 256 h⁻¹ Mpc on a side, use 7 to 9 levels of refinement with cluster subvolumes => 1500 clusters with >10¹⁴ M_{\odot} for z < 1.
- Mass resolution is $10^{10} \text{ h}^{-1} \text{ M}_{\odot}$ (Dark Matter).
- Baryon physics includes thermal cooling, star formation, supernova (Type II) feedback, and AGN heating (in progress).

Cool cores initially grow slowly

Evolution of a Non-Cool Core Galaxy Cluster

Non-cool cores suffer major mergers

Synthetic X-ray Images for Numerical Cool Core Clusters

Synthetic X-ray Images for Numerical Non-cool Core Clusters

X-ray Images of Abell Clusters

← 0.5r₂₀₀

Synthetic X-ray Surface Brightness Profiles for Numerical Clusters

- Cool core clusters are fit poorly by beta models $(S_x = S_0 [1 + (r/r_c)^2]^{1/2-3\beta})$ between r_{500} and r_{200} .
- Non-cool core clusters are fit very well to beta-models.
- Mass in CC clusters overestimated by 3-5x.

Beta-model fits To Abell Clusters

Observations currently do not extend far enough from the cluster core to see deviations from simple Beta model in outer part of CC cluster!

=>Simulations predict more cold gas outside the cores in cool core clusters than in non-cool core clusters.

Comparison of Simulated CC & NCC Clusters

- NCC baryon properties approximate that of adiabatic gas.
- In contrast, CC cluster gas show strong nonadiabatic transition in thermodynamic properties where X-ray observations are typically made.

Conclusions

- Cool core clusters are complicated, generally nonequilibrium systems where nongravitational physics is important.
- Our simulations suggest that *Non-cool core* (NCC) clusters suffer early major mergers when embryonic cool cores are destroyed. *Cool core* (CC) clusters grow more slowly without early major mergers.
- X-ray surface brightness profiles for NCC clusters are well fit by single ß-models whereas the outer emission for CC clusters is biased low compared to ß-models (resulting in masses and densities too high by factors of 3-5).
- CC clusters have roughly 40% more cool gas beyond the cores than do NCC clusters.
- These X-ray properties are produced by non-adiabatic transition region between cool core and outer cluster.

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.