Heliospheric dust detection by S/WAVES

A. Zaslavsky

Harvard-Smithsonian Center For Astrophysics

LUNAR Meeting - Boulder

Dust grains in the interplanetary medium

Sources :

- Planets, comets, asteroids
- Interstellar medium

<u>Sinks :</u>

- Fragmentation to small size
- Sublimation

Mass Flux essentially controlled by fragmentation : F ~ m^-5/6

Dust dynamics in the IP medium

$$\frac{d\mathbf{v}}{dt} = \frac{Q}{mc}(\mathbf{v} - \mathbf{V}) \times \mathbf{B} - \frac{GM_{\odot}}{r^2}\hat{\mathbf{e}}_r + \mathbf{F}_{\text{PR}}$$

Radiation pressure : Fpr/Fg ratio proportional to 1/size

Charge of bodies in the interplanetary medium : <u>Q/m ratio proportional to 1/size^2</u>

Small grains streaming at high velocities at 1 A.U.

Basics of dust detection with a radio antenna

Electric signal measured is essentially a function of the charge Q of the plasma cloud

- Recollection of the cloud's electrons by the SC surface : $\delta V_1 \sim -Q/C$

- Direct detection of the electric charge (if the impact is close enough to an antenna)

$$\delta V_2 \sim (k_B T/e) R_2/L$$
 (?)

Electric charge in the plasma cloud

Electric signals detected by the S/WAVES instrument

Observations of impacts with a short rise time, and large amplitude (some \rightarrow 175 mV)

Correlations between antenna signals

Single and Triple hits

- N 3hits ~ 5000
- N 1hit ~ 150 000

Single and triple hits

- N 3hits ~ 5000
- N 1hit ~ 40 000

Typical signals detected for the Single/Triple impacts

Single antenna impact :

- Vy ~ Vz (STA)
- Vy,z ~ Vx * 5% (STA)
- Rise time : Tr ~ 10 microseconds
- Decay time : Td ~ 1 ms

Triple antenna impact :

- $Vx \sim Vy \sim Vz$
- Rise time : Tr ~ 70 microseconds
- Decay time : Td ~ 110 microseconds

$0.2 - 0.5 \ \mu m$ sized grains flux at 1 AU

Modulation allows to determine the respective fluxes of solar and interstellar dust

$0.2 - 0.5 \ \mu m$ sized grains flux at 1 AU

F = n * (V+Visd)

F = n * (V-Visd)

$$F = F_0 + F_{ISD} \times |1 - (V_{SC}/V_{ISD})sin(\theta - \theta_0)|$$

F0 ~ 1e-4 $/m^2/s$ – Fisd ~ 1e-4 $/m^2/s$ – Vsc/Visd ~ 1 – Theta ~ 255 °

10-20 nm sized grains flux at 1 AU

How reliable are these measurements ?

What is the influence of the antennas orientation in the detection of the nano-dusts (producing the single hits) ?

calculations

Nanodust velocity vector direction ?

Perturbation of radio observations below 100 kHz

Conclusions

• It is possible to use antennas as fast dust detectors with accurate results in the $\sim 0.3 \mu m$ size range.

• The results in the ~10nm range need some calibration effort

High velocity dust would be observed by radio antennas installed on the Moon

=> simple geometry (compared to spacecraft based observation) would enable the study of the poorly known nano-dust population

=> can perturbate radio measurements at very low frequencies