LESSONS FROM EDGES

Ground-based constraints on the global 21 cm signal and implications for lunar observations

Judd D. Bowman (ASU) Alan E. E. Rogers (MIT/Haystack)

October 6, 2010

IN SEARCH OF REIONIZATION

	Location	No. of antennas	Baseline	Completion
Low Frequency Array (LOFAR)	The Netherlands	44,160	1500 km	2010
Murchison Widefield Array (MWA)	Australia	8,192	3 km	2010
21 Centimeter Array (21CMA)	China	10,287	6 km	2006
Long Wavelength Array (LWA)	New Mexico, U.S.A	12,800	400 km	2010
Precision Array to Probe Epoch of Reionization (PAPER)	Australia	32		2009
Experiment to Detect the Global EOR Signature (EDGES)	Australia	1		2009–2012
PROPOSED				
Hydrogen Epoch of Reionization Array (HERA II)	Australia	5,000		2017
Square Kilometer Array (SKA)	Australia or S. Africa	50 million	3000 km	2018-2022
Lunar Radio Array (LRA)	Far side of the moon	~ 100,000	10 km	2020–2030

Science, Vol. 325. no. 5948, pp. 1617 – 1619, 25 September 2009

Technical requirements

Spectral coverage: 30 and 200 MHz (50>z>6)

Spectral resolution: <20 kHz due to RRLs

Sensitivity: <10 mK sensitivity in 1 MHz channels

Dynamic range:>104 to see signal underneath Galaxy>106 to characterize at 1% level

Field of view: >100 deg² for "global" all-sky spectrum

Abs. calibration: 10% absolute in each spectral channel

Rel. calibration:3rd-order polynomial fit to calibrated
bandpass removes structure to 0.0001%

The dawn of radio astronomy

The bigger problem: Radio Frequency Interference (RFI)

Murchison Radio-astronomy Observatory

Orbcomm LEO satellite constellation

Experiment to Detect the Global Epoch of Reionization Signature (EDGES)

2006 - 2010

EDGES

Table 1. EDGES Specifications

Antenna configuration	"Fourpoint" dipole
	(Suh et al. 2003)
Antenna beam (FWHM)	$\sim 80^{\circ}$
Instantaneous band	90 to $205~\mathrm{MHz}$
Polarization	Single
Digitizer sample rate	$420 \mathrm{\ Ms/s}$
FFT samples	32,768
FFT spectral resolution	$12.817 \mathrm{\ kHz}$
Window function	Blackman–Harris
Window function efficiency	0.5
Window function resolution	$26 \mathrm{~kHz}$
Operational dynamic range	$> 10^{6}$

EDGES

Bowman & Rogers 2010 (submitted)

EDGES block diagram

Internally-switched calibration

• 3-position switch to measure (cycle every 10s):

$$p_0 = g (T_L + T_R)$$

$$p_1 = g (T_L + T_R + T_{cal})$$

$$p_2 = g (T_A + T_R)$$

• Solve for antenna temperature:

$$T_A = T_{cal} \frac{p_2 - p_0}{p_1 - p_0} + T_L$$

$$(T_{cal} > T_L \approx 300 \text{ K}, T_A \approx 250 \text{ K}, T_R \approx 20 \text{ K})$$

- Results: >10⁵ dynamic range achieved with EDGES
- Limitations:
 - Total power differences between T_{L} and T_{A} can leave systematic errors
 - Temporal variations: comparing measurements at different times

Internally-switched calibration

Antenna Impedance Causes Trouble

 $T_{ant}(\nu) = \left[1 - \left|\Gamma(\nu)\right|^2\right] T_{sk\nu}(\nu) + \left[2\varepsilon \left|\Gamma\right|\cos(\beta) + \varepsilon^2 \left|\Gamma\right|^2\cos^2(\beta) + (1 - \varepsilon)^2 \left|\Gamma\right|^2\right] T_{re\nu}(\nu) + \cdots$

Measured spectrum

Integrated RFI (time excision only – by broadband power level in FM, Orbcomm, DTV bands: 30% removal)

Bowman & Rogers 2010

Total power in band vs. time (Aug 23, 2009)

Model fitting

• Polynomial term: $p = \sum_{n=0}^{m} a_n v^n$

to account for impedance mismatch + galactic spectrum

• Simple step model of reionization: $s = \frac{\Delta T_{21}}{2} (1 + \tanh[\alpha(v - v_0)])$

21 cm results

Lessons from EDGES

Technical problems for ground-based experiments	DARE
Complex environment	Simple environment
Prevents transferring laboratory calibration of the antenna impedance and beam pattern to the deployed instrument	Simple, compact, stable geometry of spacecraft enables accurate modeling of the antenna and facilitates <i>in situ</i> calibration.
Multipath reflections	No multipath
Trees, mountains, and other structures can reflect sky noise	No external structures are in proximity to the spacecraft.
RFI is always present	No RFI
	Full spectrum is usable for science.
Dynamic range is difficult to achieve	Easy to achieve needed dynamic range
A/D converters must use large bit-depths and be highly linear to accommodate RFI. Particularly susceptible to internal clock stability errors and digital noise.	A/D converter can use low bit-depth, industry standard specifications. Receiver based on 50 years of proven RF flight hardware.
The Earth's ionosphere	No ionosphere
Refraction of astronomical radio waves leads to frequency-dependent variations in the intensity and position of the radio sky.	

* No transmission line cable between antenna and receiver, low duty cycle

The end

This scientific work uses data obtained from the Murchison Radio-astronomy Observatory. We acknowledge the Wajarri Yamatji people as the traditional owners of the Observatory site.