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Agenda

 Mission Design Overview
─ Lunar trajectory
─ Insertion
─ Orbit

 Spacecraft Design Overview
 Mission operations Overview
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Two Types of Trajectories to Get to the Moon

 Direct (conventional) Hohmann transfer, used by most lunar missions including Apollo
 Weak Stability Boundary trajectory 

─ The WSB lunar trajectory offers savings in terms of orbit insertion delta-v, at the cost of 
restricted launch days per month and much longer transit duration. 
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 DARE has selected the 
WSB due to fuel savings

─ Smaller fuel tank 
enables use of smaller 
launch fairing

─ Gravitational attraction 
of Earth and moon 
approximately balanced

─ Used successfully by 
the Japanese Hiten
mission in 1991. 

─ Compatible with Taurus 
and Minotaur launch 
vehicles
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Insertion into Orbit is Dependent on Launch

 Requires specific injection conditions (leaving Earth) and a few small, delicate trajectory 
correction maneuvers to produce the trajectory desired. 

 Launch must occur when the moon is about 140 degrees counter-clockwise from the sun 
direction. 

 The trajectory will then be as shown, in quadrant II. 

Q uadran t II

Q uadran t IV

 There is a second launch opportunity 
each month in quadrant IV 

 Launch a day or two earlier or later is 
possible, 
 At the cost of larger mid-course 

correction burns.
 Two sets of launch windows each 

month 
 Each is one launch opportunity 

per day for ~5 consecutive days.
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The DARE Orbit has Heritage

 200 Km selected as best balance between maximum data acquisition and altitude 
variations

 Equatorial lunar orbits at an altitude of 100 to 200 km are stable 
─ ~70-80 km periodic variations in apoapsis and periapsis altitudes 

 DARE orbit stable without propulsive orbit maintenance for the mission

Actual Lunar Prospector eccentricity-argument of periapsis in 100 km orbit 
(from Folta, et al., 1999, p. 3)
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Spacecraft Maximizes Science Data Value by 
Optimizing Instrument Performance

 The DARE spacecraft is specifically designed to support the DARE science 
investigations with these key features:

─ RF ‘quiet’ spacecraft implementation does not compromise data gathering
─ Spacecraft configuration that supports DARE antenna with a large, clear field of view
─ Maximization of the DARE antenna baseline within fairing constraints
─ Large data storage capacity, allowing for uninterrupted science even with missed ground 

contacts
─ System architecture with high heritage from Kepler, Deep Impact (DI), WISE, and STP-SIV
─ Propulsion tank sized to take advantage of a lighter spacecraft, 

 Additional fuel equates to a shorter burn time for orbit capture
─ Modular construction, allowing parallel integration and thereby reducing schedule risk
─ Compatibility with standard 63”-fairing LV
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Spacecraft and Payload Minimize Deployment

 Instrument radials deploy
 Solar arrays deploy downward away from the RF sensitive 

payload

S how n in  Taurus 3113 
(X L, 63” fa iring , S ta r37  5 th s tage)

S o la r A rrays D ep loyed

Instrum ent P ay load

S pacecra ft In te rio r
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Spacecraft Systems Simple and Proven

 ADCS design provides medium-accuracy pointing and navigation using flight-proven 
hardware and control algorithms

─ Single String
─ Star Tracker, IMU, Coarse Sun Sensor
─ 3-axis Stabilized
─ Reaction Wheels and Thrusters

 Monopropellant systems ensures a robust propulsion design. 
─ Low-cost system that meets DARE requirements using high-heritage components
─ Lunar insertion with hydrazine thrusters
─ Thrusters provide (minimal) orbit maintenance and de-saturate the reaction wheels

 The electrical power subsystem (EPS) uses a direct energy-transfer architecture that is 
reliable and efficient

─ Battery dominated with fixed solar arrays
 The Thermal controls system will be mostly passive using Multi-Layer Insulation with a 

solar reflective outer layer
─ Radiators will be oriented to avoid the Moon’s IR load.
─ 14 heater circuits controlled by redundant mechanical thermostats. 
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Modifications to Some Sub-systems 
Optimize Mission Performance

 The structure provides a Faraday cage to reduce RF noise emissions from the spacecraft 
components

 S-band telecom subsystem is based on the flight-proven architecture. 
─ Standard S-Band multi-mode transceiver provides S-band uplink and downlink functions. 
─ The S-band system provides both 

 (1) high-data rate, high-data-volume capability for the mission science using a medium gain antenna
 (2) standard command/housekeeping functions via the hemispherical coverage low-gain antennas

 The data handling (C&DH) architecture is based on a light-weight high-performance 
single-string Integrated Avionics Unit (IAU)

─ Low volume and mass supports the ‘RF quiet’ bus
─ 32+ Gbyte mass memory board for science data storage 
─ Incorporation of unique payload interfaces

 DARE FSW has the ability to easily adapt to changing mission demands. 
─ Includes modules for real-time (CCSDS) command and telemetry management, stored 

command processing, fault protection, attitude determination and control, battery charge 
management and instrument control
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Mission Operations Utilize the Near Earth 
Network

 For command uplink, data downlink, and tracking data (Doppler, Ranging, Angle). 
 The spacecraft uses medium gain antenna for science and stored engineering data 

downlinks, and a low gain antenna for uplink and real-time downlink via S-band.
 Data downlink is automated
 Commanding occurs once/week
 Data analysis will begin 6 months after first data received

DARE Mission Timeline

Sub-Phases

Launch & 
Initialize Cruise

Launch Vehicle Separation

Science Operations

Launch

Post Operations

Terminal Countdown Start
(L – 3 hours)

DecommissionBus 
Checkout

LOI
L+3 years

L + TBD

Spacecraft at 
launch site
(L – 8 weeks)

Completion of final data 
analysis, archive

Detumble, Acquire Sun

Mission 
Phases

Data Analysis

Pre-Launch

AOS
Deploy Antenna Radials

TCMs Late 
Cruise

Payload 
Calibration Science Collection
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DARE Spacecraft Uniquely Suited to 
Science Objectives

 Spacecraft does not interfere with data gathering
─ RF ‘quiet’
─ Large data storage capacity
─ Deployables located below instrument ground plane

 Design simplicity and heritage optimize data quality and cost
─ Minor modifications where needed for instrument unique interfaces

 Trajectory and station keeping optimized to reduce fuel need
─ Reduces size of propulsion tank
─ Able to fit into standard size launch fairing

 Mission operations specific to DARE
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