

Lessons from Low-Frequency Spectral Line Observations

Jeremy Darling (CASA, University of Colorado)

Low Energy Excitation Case Studies: Formaldehyde absorption of the CMB HI 21 cm and OH 18 cm Line Surveys

Lessons from Low-Frequency Spectral Line Observations

Jeremy Darling (CASA, University of Colorado)

Collaborators: Alberto Bolatto (Maryland) Geoffrey Bower (UC Berkeley) Steve Curran (UNSW) Riccardo Giovanelli (Cornell) *Kathryn Grasha* (Colorado)* Martha Haynes (Cornell) *Erin Macdonald* (Glasgow) John Stocke (Colorado) *Kyle Willett* (Colorado) *Kyle Willett* (Colorado) *Benjamin Zeiger* (Colorado)

General Concerns: Low Energy Lines

Low energy (frequency) transitions are slow ($A_{ij} \propto v^3$)

 \Rightarrow Metastable states are common

Slight imbalances in rates of higher energy transitions lead to large nonthermal populations in low energy states (Boltzmann factors for low-energy states are 1-ε thanks to ≥ 2.73 K radiation field)

Pumping cycles are not intuitive and rely on the detailed structure of many states and the rates connecting them (A_{ij}, C_{ij}) Lyα pumping of 21 cm line ("easy") H₂ collisional pumping of H₂CO (medium)* IR pumping of OH (difficult)*

We simply do not know what bright maser or other nonthermal lines will appear at low frequencies Foregrounds for HI 21 cm Science

* Was not predicted.

The OH Molecule

Rotational "Ladder"

 $^{2}\Pi_{3/2}$

 ${}^{2}\Pi_{1/2}$

The OH Molecule

 $^{2}\Pi_{3/2}$

 ${}^{2}\Pi_{1/2}$

Galactic H₂CO

Dark Clouds:

- "Anomalous" H₂CO absorption

(e.g. Palmer et al. 1969)

- Absorption in multiple cm lines
- No radio continuum source!

H₂CO: The DASAR

L ight (Microwave) A mplification by S timulated E mission of R adiation

Inversion: "Heating" of lines T_x >> T_{kin}

Pump required: Chemical, collisional, radiative D arkness* A mplification** by S timulated A bsorption of R adiation

Townes et al (1953)

Anti-Inversion: "Cooling" of lines T_x < T_{CMB}

Pump required: Collisions with H₂

*Not really dark. **Not a true amplification.

H₂CO Energy Level Structure

Anti-inverted (cm) line ratios yield n(H₂), nearly independent of T_{kin}. T_x ~ 1 K

- Line ratios between species give ortho:para ratio
 ⇒ H₂CO formation channel (hot/cold; gas/dust)
- Line ratios from different K_a ladders of a given species (ortho/para) yield T_{kin}

↓ Low frequency (m-wave) transitions: T_x ~ 10 mK

 $T_{CMB} - T_x \sim T_{CMB} = (1+z) 2.73 \text{ K}$

H₂CO Absorption Against the CMB

H_2CO : The DASAR

The CMB is the ultimate illumination source:

- Behind everything
- Everywhere
- Uniform on arcsec scales

*H*₂CO absorption against the CMB offers an unrivaled probe of dense molecular gas, independent of redshift!

A H₂CO deep field would produce immediate precise redshifts and positions of a *mass-limited* survey of star-forming galaxies, automatically omitting AGN.

Anti-Inversion versus Redshift

- The rest-frame temperature decrement increases with redshift
- The observed temperature decrement is nearly independent of redshift!
- Absorption is redshiftindependent

HI 21 cm and OH 18 cm Case Studies (Absorption and Emission)

Targeted Surveys

Known targets Known redshifts Issue is candidate selection

Targeted "Blind" Surveys

Known targets Unknown redshifts Issues: candidate selection, bandwidth, RFI * How do we know if we have or have not detected something?

Truly "Blind" Surveys

Unknown targets Unknown redshifts Issues: areal coverage, bandwidth, RFI, host identification

Green Bank Blind HI Survey:

Observe 200 MHz at 800 MHz with 6 kHz (~2 km s⁻¹) resolution

λ /∆λ **= 132,000**

 $BW/\lambda = 0.25$

Radio Freq Interference (RFI) is problematic and reduces z coverage

The Search for Molecular Absorbers

A Proximity Effect on HI Absorption

Survey of 107 compact radio sources for intrinsic HI absorption:

- Detection rate depends on UV luminosity
- UV luminosity threshold depends on radio source size

* See Grasha poster *

A Proximity Effect on HI Absorption

Survey of 107 compact radio sources for intrinsic HI absorption:

- Detection rate depends on UV luminosity
- UV luminosity threshold depends on radio source size

* See Grasha poster *

The Cosmic Distribution of HI

Survey of 186 compact radio sources for intervening HI absorption:

- Obtain the column density distribution function f(N)
- Ultimately we will be able to constrain T_{spin}

Broken power-law: Prochaska & Wolfe (2009)

* See Grasha poster *

The Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA) Survey: 7000 deg² HI 21 cm *emission* survey

For a fixed sensitivity, OH megamasers will *dominate* HI 21 cm line surveys above some redshift!

Briggs 1998 Darling & Giovanelli 2002

For a fixed sensitivity, OH megamasers will *dominate* HI 21 cm line surveys above some redshift!

Increasing sensitivity moves the crossing point to higher redshift.

A survey for HI is a survey for OH, major mergers, and extreme starbursts.

Briggs 1998 Darling & Giovanelli 2002

* See Willett poster *

Summary

Low Frequency Spectral Lines

Surprises are likely Foregrounds to EoR HI 21 cm studies New science

Case Studies

Formaldehyde absorption of CMB Foregrounds Distance-independent probe of dense molecular gas

HI 21 cm absorption lines: RFI issues Proximity effect f(N) and T_{spin}

OH Megamasers HI survey contaminant Tracer of merging and star formation