21 cm Cosmology

Miguel F. Morales Boulder, October 5th, 2010

Tuesday, November 23, 2010

See invited ARAA review

Reionization and Cosmology with 21-cm Fluctuations

Miguel F. Morales¹ and J. Stuart B. Wyithe²

¹Department of Physics, University of Washington, Seattle, Washington 98195; email: mmorales@phys.washington.edu

²School of Physics, University of Melbourne, Parkville, 3052 Victoria, Australia; email: swyithe@unimelb.edu.au

The cosmological HI signal

Tuesday, November 23, 2010

How did galaxies form?

Short history of hydrogen

Dark energy with HI

Wyithe & Loeb (2007)

<F_{HI}>_V related to Lyman-α absorption, ~10⁻⁴
 <F_{HI}>_M related to HI emission, ~10⁻²

HI during EoR

Statistical EoR detection

Morales & Hewitt (2004)

Spherical symmetry

Morales & Hewitt (2004)

EoR power spectrum

Furlanetto, Zaldarriaga, Hernquist (2004a,b) Bowman, Morales & Hewitt (2005)

z = 8,360 hours of integration

Kaplinghat (2005)

Power spectrum dynamics

HI power spectra evolution

Tuesday, November 23, 2010

Why is this hard? Foregrounds

- Galactic emission (polarized and Faraday rotated)
- Bright point sources
- Faint point sources
- Instrumental contamination
- Radio recombination lines
- RFI
- Mode mixing

Foreground symmetry

U

k-space measurement

Mode mixing

- Frontier of foreground subtraction is interactions between calibration and foregrounds
- Need measurement fidelity of 10⁻⁴ 10⁻⁶
- Effectively a product of the calibration errors and foreground uncertainty

Examples

- Chromatic array beam (PSF) & residual source flux, residual frequency ripple
- Polarized foreground & polarization mis-calibration, flux leakage from Q & U → I
- Antenna beam dependence & point sources, decorrelation of visibilities at different frequencies

k-space measurement

Bright source location error

Datta et al. (2010)

Foreground subtraction

Datta et al. (2010)

Confusion level sources

Bowman et al. (2008)

k-space measurement

MWA sensitivity

MWA power spectrum sensitivity

Furlanetto, Zaldarriaga, Hernquist (2004a,b) Bowman, Morales & Hewitt (2005) Kaplinghat (2005)

z = 8,360 hours of

k-space Fisher matrixes

Tuning parameter sensitivity

Opportunities for lunar 21 cm

- Low RFI
- No ionosphere
- Slow rotation rate
- Dark ages (redshift > 40)
- Very large arrays, novel hardware (e.g. MOFF?)
 Challenge of very fast ground-based development

See invited ARAA review

Reionization and Cosmology with 21-cm Fluctuations

Miguel F. Morales¹ and J. Stuart B. Wyithe²

¹Department of Physics, University of Washington, Seattle, Washington 98195; email: mmorales@phys.washington.edu

²School of Physics, University of Melbourne, Parkville, 3052 Victoria, Australia; email: swyithe@unimelb.edu.au